CSE 331
Software Design & Implementation

Autumn 2022
Section 4 — Rep Exposure, JUnit, and HW4

UW CSE 331 Autumn 2022

Administrivia

* Done with HW3!
« HWa3 due yesterday!
 HW4 due next Wednesday (at 11PM)!

* Any questions?

UW CSE 331 Autumn 2022

Agenda

 Rep Exposure Exercise

e FiniteSet and SimpleSet

« How to write JUnit Tests

UW CSE 331 Autumn 2022

Rep Exposure Exercise

main

¥ clts &

N —

UW CSE 331 Autumn 2022

Rep Exposure Exercise (Solution)

main

| clts &

N Zad
»

:

4

x 17
y 42

/'

I

\><f A B A
\ii‘/

A

UW CSE 331 Autumn 2022

HW4 Background: Floats

Floats vs. Doubles

— Both represent floating point numbers, but doubles are twice the
size (think int vs long)

— But we will be using floats

Special cases:
— Float.POSITIVE INFINITY and Float.NEGATIVE INFINITY

— Float.NaN - means not a number

Operations where either one of the operands is NaN
— All operations will return NaN
— €.g.NaN * 1.23456f = NaN

Including ==
— Float.NaN == Float.NaN -> false
— Use Float.isNaN() or Float.isFinite () instead

UW CSE 331 Autumn 2022 6

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Float.html

Finite Sets

* In HW4, we will be working in the FiniteSet class, which represents
a set of points along a number line, where each pointis a £loat.

« Let’s say we choose to represent this as an array of floats, i.e.
float][]

* We need to make some choices:
— Should we allow duplicates? Why or why not?
— Should we sort our array? Why or why not?

« We will not allow duplicates and keep the array sorted.

« We will also store a Float . NEGATIVE INFINITY as the first element
in the array and a Float.POSTIVE INFINITY as the last element...

— This will make reasoning about it easier. For instance, we can
guarantee that there is an index i suchthatD[i] < x < D[i+1]

UW CSE 331 Autumn 2022

FiniteSet Field

private final float[] wvals;

Theset { -5.3, 1.48, 7.1234, 463.8 } will be represented as:

[Float.NEGATIVE INFINITY, -5.3, 1.48, 7.1234, 463.8, Float.POSITIVE INFINITY]

What is our representation invariant and abstraction function?

// Points are stored in an array, in sorted order, with an
// extra -infinity at the front and +infinity at the end
// to simplify union etc.

//

// RI: -infinity = vals[0] < vals[l] < ... <

// vals[vals.length-1] = +infinity
// AF(this) = { vals[l], vals[2], ..., vals[vals.length-2] }

UW CSE 331 Autumn 2022 8

FiniteSet Methods

Some common set operations:
* Finding the union (U) of set A and set B. This is a new set of points that
are either in A, B, or both A and B:
— union([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])
= [-inf, 1, 4,5, 6, 7, 11, inf] => {1, 4,5, 6, 7, 11}

* Finding the intersection (N) of set A and set B. This is a new set of points

that are in both A and B:
— intersection([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])
= [-inf, 1, 7, inf] => {1, 7}

* Finding the difference (\) of set A and set B. This is a new set of points

that are in A but not B:
— difference([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])
= [-inf, 4, 5, inf] => {4, 5}

UW CSE 331 Autumn 2022 9

SimpleSet

For much of the assignment, you will be working in SimpleSet. java

A SimpleSet is defined as either a finite set of points or the complement
of a finite set of points (meaning everything but).

— e.g. given the set of points { 1, 7, 9 }:
* we can have a simple set that contains 1, 7, and 9 or
« one that contains all real numbers except 1, 7, and 9

/**
* Represents an immutable set of points on the real line that is easy to
* describe, either because it is a finite set, e.g., {(pl, p2, ..., PN},
* or because it excludes only a finite set, e.g., R\ {pl, p2, ..., pN}.
* As with FiniteSet, each point is represented by a Java float with a
* non-infinite, non-NaN value.
*/

public class SimpleSet {

UW CSE 331 Autumn 2022 10

SimpleSet Representation

You will have to implement the entire SimpleSet class. This includes:
» The representation (fields)
— You should have 2 FiniteSet fields. Two cases:

* Regular set: first FiniteSet is the set of points in the set,
second is null

« Complement: first FiniteSet is null, second is the set of points
not in the set

» Abstraction function and representation invariant

 And a bunch of methods!

UW CSE 331 Autumn 2022 11

FiniteSet starter code

Let’'s now skim the starter code...

UW CSE 331 Autumn 2022

12

Testing: A quick introduction

* |n past assignments, you have run the test suite.

« But now you must start writing your own tests!

UW CSE 331 Autumn 2022

13

JUnit

* Industry-standard Java toolkit for unit testing
— We’'re using JUnit 4.12
— Check out the javadocs

* Aunit test is a test for one “component” by itself
— “Component” typically a class or a method

 Each unit test written as a method
— WEeé'll see the particulars in a moment...

* Closely related unit tests should be grouped into a class
— For example, all unit tests for the same ADT implementation

UW CSE 331 Autumn 2022

14

https://junit.org/junit4/javadoc/4.12/org/junit/package-summary.html

Writing tests with JUnit

A method annotated with @Test is flagged as a JUnit test

import org.junit.*;

import static org.junit.Assert.*;

/** Unit tests for my Foo ADT implementation */
public class FooTests {

@Test

public void testBar () {

/* use JUnit assertions in here */

UW CSE 331 Autumn 2022

15

Using JUnit assertions

JUnit assertions establish success or failure of the test method
— Note: JUnit assertions are different from Java’s assert statement

Use to check that an actual result matches the expected value
— Example: assertEquals (42, meaningOfLife()) ;
— Example: assertTrue (1list.isEmpty()) ;

A test method stops immediately after the first assertion failure
— If no assertion fails, then the test method passes
— Other test methods still run either way

JUnit results show details of any test failures

UW CSE 331 Autumn 2022

16

Common JUnit assertions

JUnit's documentation has a full list, but these are the most common
assertions.

Assertion Failure condition
assertTrue (test) test == false
assertFalse (test) test == true

assertEquals (expected, actual) expected and actual are not equal

assertSame (expected, actual) expected '= actual
assertNotSame (expected, actual) |expected == actual
assertNull (value) value '= null
assertNotNull (value) value == null

Any JUnit assertion can also take a string to show in case of failure, e.g.,
assertEquals (“helpful message”, expected, actual).

UW CSE 331 Autumn 2022 17

https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html

Always™ use >= 1 JUnit Assertion

» If you don’t use any JUnit assertions, you are only checking that
no exception/error occurs

« That's a pretty weak notion of passing a test; rarely the best test
you could write

« Having more than one JUnit assertion in a test may make
sense, but one is the most common scenario

* Special case coming in a couple slides &

UW CSE 331 Autumn 2022 18

JUnit assertions vs Java's assert

* Use JUnit assertions only in JUnit test code

— JUnit assertions have names like assertEquals,
assertNotNull, assertTrue

— Part of JUnit framework used to report test results
* Accessed via import org.junit....

— Don’t use in ordinary Java code (never import
org.junit.... in non-JUnit code)

« Use Java’'s assert statement in ordinary Java code

— Use liberally to annotate/check “must be true” / “must not
happen” / etc. conditions

— Use in checkRep () to detect failure if problem(s) found

— Do not use in JUnit tests to check test result — does not
interact properly with JUnit framework to report results

UW CSE 331 Autumn 2022

19

Checking for a thrown exception

« Should test that your code throws exceptions as specified

» This kind of test method fails if its body does not throw an
exception of the named class

— May not need any JUnit assertions inside the test method unlike
our previous guideline

@Test (expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() ({
List<String> list = new ArrayList<String>();
list.get(0) ;

}

Do not use assertThrows () (that comes in JUnit 4.13, and we are
using JUnit 4.12)

UW CSE 331 Autumn 2022

20

Test ordering, setup, clean-up

JUnit does not promise to run tests in any particular order.

However, JUnit can run helper methods for common setup/cleanup
* Run before/after each test method in the class:

@Before
public void m() { ... }
@QAfter
public void m() { ... }

* Run once before/after running all test methods in the class:

@BeforeClass
public static void m() { ... }
@QAfterClass
public static void m() { ... }

UW CSE 331 Autumn 2022 21

JUnit Tests Example

Let’'s look at some example JUnit tests...

UW CSE 331 Autumn 2022

22

Tips for effective testing

Use constants instead of hard-coded values
— Makes easier to change later on

« Take advantage of assertion messages

» Give a descriptive name to each unit test (method)
— Verbose but clear is better than short and inscrutable
— Don’t go overboard, though :-)

» Write tests with a simple structure
— Isolate bugs one at a time with successive assertions
— Helps avoid bugs in your tests too!

« Aim for thorough test coverage
— Big/small inputs, common/edge cases, exceptions, ...

UW CSE 331 Autumn 2022

23

Test Design Worksheet

Work in small groups

Give logic of the tests, not actual code

Only test the operations provided on the worksheet

More details in lecture if additional information/review needed

UW CSE 331 Autumn 2022

