CSE 331
Software Design & Implementation

Autumn 2022
Section 4 — Rep Exposure, JUnit, and HW4
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Administrivia

* Done with HW3!
« HWa3 due yesterday!
 HW4 due next Wednesday (at 11PM)!

* Any questions?
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Agenda

 Rep Exposure Exercise

e FiniteSet and SimpleSet

« How to write JUnit Tests
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Rep Exposure Exercise
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Rep Exposure Exercise (Solution)
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HW4 Background: Floats

Floats vs. Doubles

— Both represent floating point numbers, but doubles are twice the
size (think int vs long)

— But we will be using floats

Special cases:
— Float.POSITIVE INFINITY and Float.NEGATIVE INFINITY

— Float.NaN - means not a number

Operations where either one of the operands is NaN
— All operations will return NaN
— €.g.NaN * 1.23456f = NaN

Including ==
— Float.NaN == Float.NaN -> false
— Use Float.isNaN() or Float.isFinite () instead
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https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Float.html

Finite Sets

* In HW4, we will be working in the FiniteSet class, which represents
a set of points along a number line, where each pointis a £loat.

« Let’s say we choose to represent this as an array of floats, i.e.
float][]

* We need to make some choices:
— Should we allow duplicates? Why or why not?
— Should we sort our array? Why or why not?

« We will not allow duplicates and keep the array sorted.

«  We will also store a Float . NEGATIVE INFINITY as the first element
in the array and a Float.POSTIVE INFINITY as the last element...

— This will make reasoning about it easier. For instance, we can
guarantee that there is an index i suchthatD[i] < x < D[i+1]
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FiniteSet Field

private final float[] wvals;

Theset { -5.3, 1.48, 7.1234, 463.8 } will be represented as:

[Float.NEGATIVE INFINITY, -5.3, 1.48, 7.1234, 463.8, Float.POSITIVE INFINITY]

What is our representation invariant and abstraction function?

// Points are stored in an array, in sorted order, with an
// extra -infinity at the front and +infinity at the end
// to simplify union etc.

//

// RI: -infinity = vals[0] < vals[l] < ... <

// vals[vals.length-1] = +infinity
// AF(this) = { vals[l], vals[2], ..., vals[vals.length-2] }
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FiniteSet Methods

Some common set operations:
* Finding the union (U) of set A and set B. This is a new set of points that
are either in A, B, or both A and B:
— union([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])
= [-inf, 1, 4,5, 6, 7, 11, inf] => {1, 4,5, 6, 7, 11}

* Finding the intersection (N) of set A and set B. This is a new set of points

that are in both A and B:
— intersection([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])
= [-inf, 1, 7, inf] => {1, 7}

* Finding the difference (\) of set A and set B. This is a new set of points

that are in A but not B:
— difference([-inf, 1, 4, 5, 7, inf], [-inf, 1, 6, 7, 11, inf])
= [-inf, 4, 5, inf] => {4, 5}
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SimpleSet

For much of the assignment, you will be working in SimpleSet. java

A SimpleSet is defined as either a finite set of points or the complement
of a finite set of points (meaning everything but).

— e.g. given the set of points { 1, 7, 9 }:
* we can have a simple set that contains 1, 7, and 9 or
« one that contains all real numbers except 1, 7, and 9

/**
* Represents an immutable set of points on the real line that is easy to
* describe, either because it is a finite set, e.g., {(pl, p2, ..., PN},
* or because it excludes only a finite set, e.g., R\ {pl, p2, ..., pN}.
* As with FiniteSet, each point is represented by a Java float with a
* non-infinite, non-NaN value.
*/

public class SimpleSet {
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SimpleSet Representation

You will have to implement the entire SimpleSet class. This includes:
» The representation (fields)
— You should have 2 FiniteSet fields. Two cases:

* Regular set: first FiniteSet is the set of points in the set,
second is null

« Complement: first FiniteSet is null, second is the set of points
not in the set

» Abstraction function and representation invariant

 And a bunch of methods!
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FiniteSet starter code

Let’'s now skim the starter code...
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Testing: A quick introduction

* |n past assignments, you have run the test suite.

« But now you must start writing your own tests!
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JUnit

* Industry-standard Java toolkit for unit testing
— We’'re using JUnit 4.12
— Check out the javadocs

* Aunit test is a test for one “component” by itself
— “Component” typically a class or a method

 Each unit test written as a method
— WEeé'll see the particulars in a moment...

* Closely related unit tests should be grouped into a class
— For example, all unit tests for the same ADT implementation
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https://junit.org/junit4/javadoc/4.12/org/junit/package-summary.html

Writing tests with JUnit

A method annotated with @Test is flagged as a JUnit test

import org.junit.*;

import static org.junit.Assert.*;

/** Unit tests for my Foo ADT implementation */
public class FooTests {

@Test

public void testBar () {

/* use JUnit assertions in here */
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Using JUnit assertions

JUnit assertions establish success or failure of the test method
— Note: JUnit assertions are different from Java’s assert statement

Use to check that an actual result matches the expected value
— Example: assertEquals (42, meaningOfLife()) ;
— Example: assertTrue (1list.isEmpty()) ;

A test method stops immediately after the first assertion failure
— If no assertion fails, then the test method passes
— Other test methods still run either way

JUnit results show details of any test failures
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Common JUnit assertions

JUnit's documentation has a full list, but these are the most common
assertions.

Assertion Failure condition
assertTrue (test) test == false
assertFalse (test) test == true

assertEquals (expected, actual) expected and actual are not equal

assertSame (expected, actual) expected '= actual
assertNotSame (expected, actual) |expected == actual
assertNull (value) value '= null
assertNotNull (value) value == null

Any JUnit assertion can also take a string to show in case of failure, e.g.,
assertEquals (“helpful message”, expected, actual).
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https://junit.org/junit4/javadoc/4.12/org/junit/Assert.html

Always™ use >= 1 JUnit Assertion

» If you don’t use any JUnit assertions, you are only checking that
no exception/error occurs

« That's a pretty weak notion of passing a test; rarely the best test
you could write

« Having more than one JUnit assertion in a test may make
sense, but one is the most common scenario

* Special case coming in a couple slides &
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JUnit assertions vs Java's assert

* Use JUnit assertions only in JUnit test code

— JUnit assertions have names like assertEquals,
assertNotNull, assertTrue

— Part of JUnit framework used to report test results
* Accessed via import org.junit....

— Don’t use in ordinary Java code (never import
org.junit.... in non-JUnit code)

« Use Java’'s assert statement in ordinary Java code

— Use liberally to annotate/check “must be true” / “must not
happen” / etc. conditions

— Use in checkRep () to detect failure if problem(s) found

— Do not use in JUnit tests to check test result — does not
interact properly with JUnit framework to report results
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Checking for a thrown exception

« Should test that your code throws exceptions as specified

» This kind of test method fails if its body does not throw an
exception of the named class

— May not need any JUnit assertions inside the test method unlike
our previous guideline

@Test (expected=IndexOutOfBoundsException.class)

public void testGetEmptyList() ({
List<String> list = new ArrayList<String>();
list.get(0) ;

}

Do not use assertThrows () (that comes in JUnit 4.13, and we are
using JUnit 4.12)

UW CSE 331 Autumn 2022

20



Test ordering, setup, clean-up

JUnit does not promise to run tests in any particular order.

However, JUnit can run helper methods for common setup/cleanup
* Run before/after each test method in the class:

@Before
public void m() { ... }
@QAfter
public void m() { ... }

* Run once before/after running all test methods in the class:

@BeforeClass
public static void m() { ... }
@QAfterClass
public static void m() { ... }
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JUnit Tests Example

Let’'s look at some example JUnit tests...
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Tips for effective testing

Use constants instead of hard-coded values
— Makes easier to change later on

« Take advantage of assertion messages

» Give a descriptive name to each unit test (method)
— Verbose but clear is better than short and inscrutable
— Don’t go overboard, though :-)

» Write tests with a simple structure
— Isolate bugs one at a time with successive assertions
— Helps avoid bugs in your tests too!

« Aim for thorough test coverage
— Big/small inputs, common/edge cases, exceptions, ...
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Test Design Worksheet

Work in small groups

Give logic of the tests, not actual code

Only test the operations provided on the worksheet

More details in lecture if additional information/review needed
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