
CSE 331
Software Design & Implementation

Autumn 2021
Section 7 – Dijkstra's algorithm; Model-View-Controller, HW7

UW CSE 331 Autumn 2021 1



Agenda

• Overview of HW7 – “Pathfinder”

• Dijkstra’s algorithm

• Model-View-Controller (MVC) design

• The campus dataset

2UW CSE 331 Autumn 2021



HW7 – Pathfinder
A program to find the shortest walking routes through campus ca. 2006

– Network of walkways in campus constitutes a graph!

Homework progresses through 4 steps:
1. Modify your graph ADT to use generic types for node/edge labels

a. Update HW5 to use the generic graph ADT
b. Make sure all the HW5 tests pass!
c. Update HW6 to use the generic graph ADT
d. Make sure all the HW6 tests pass!

2. Implement Dijkstra’s algorithm
– Starter code gives a path ADT to store search result: 

pathfinder.datastructures.Path

3. Run tests for your implementation of Dijkstra’s algorithm

4. Complete starter code for the Pathfinder application

3UW CSE 331 Autumn 2021



Dijkstra’s algorithm

• Named for its inventor, Edsger Dijkstra (1930–2002)
– Truly one of the “founders” of computer science
– Just one of his many contributions

• Key idea: Proceed roughly like BFS, factoring in edge weights:
– Track the path to each node with least-yet-seen cost 
– Shrink a set of pending nodes as they are visited

• A priority queue makes handling weights efficient and convenient
– Helps track which node to process next

• Note: Dijkstra’s algorithm requires all edge weights be nonnegative
– (Other graph search algorithms can handle negative weights –

see Bellman-Ford algorithm)

4UW CSE 331 Autumn 2021



Priority queue

• A queue-like ADT that reorders elements by associated priority
– Whichever element has the least priority dequeues next (not FIFO)
– Priority of an element traditionally given as a separate integer

• Java provides a standard implementation, PriorityQueue<E>
– Implements the Queue<E> interface but has distinct semantics
– Enqueue (add) with the add method
– Dequeue (remove highest priority) with the poll method

• PriorityQueue<E> uses comparison order for priority order
– Default: class E implements Comparable<E>
– May configure otherwise with a Comparator<E>

5UW CSE 331 Autumn 2021



Priority queue – example

q = new PriorityQueue<Double>();

q.add(5.1);

q.add(4.2);

q.add(0.3);

q.poll(); // 0.3

q.add(0.8);

q.poll(); // 0.8

q.add(20.4);

q.poll(); // 4.2

6

5.1

4.2 5.1

0.3 4.2 5.1

0.8 4.2 5.1

4.2 5.1

4.2 5.1

4.2 5.1 20.4

5.1 20.4

UW CSE 331 Autumn 2021



Finding the “shortest” path

• HW6 measured the “shortest” path by the number of its edges
– So really, the path with the fewest edges (i.e., fewest hops)
– Implemented by breadth-first search (BFS)
– Edge labels totally irrelevant (aside from our tie-breaking rules)

• In HW7, edge labels are numbers, called weights
– Labeled graphs like that are called weighted graphs
– An edge’s weight is considered its cost (think time, distance, price, …)

• HW7 measured the “shortest” path by the total weight of its edges
– So really, the path with the least cost
– Find using Dijkstra’s algorithm
– Edge weights crucially relevant

7UW CSE 331 Autumn 2021



Dijkstra’s algorithm

• Main idea: Start at the source node and find the shortest path to 
all reachable nodes.
– This will include the shortest path to your destination!

• What is the shortest path from A to C for the given graph using 
Dijkstra’s algorithm? Using BFS?

UW CSE 331 Autumn 2021 8

A B

C

2

110



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

while active is non-empty:
minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

9UW CSE 331 Autumn 2021

A B

C

2

110



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

<inv ???> What is good invariant for this loop?
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

10UW CSE 331 Autumn 2021

A B

C

2

110



Dijkstra’s algorithm – paths from A  

11

A B

D
C

F H

E

G

0 ? ? ?

?

?

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A 0 -
B
C
D
E
F
G
H

path cost

[A] 0

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A 

12

A B

D
C

F H

E

G

0 ? ? ?

?

?

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B
C
D
E
F
G
H

path cost

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A 

13

A B

D
C

F H

E

G

0 2 ? ?

4

1

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E
F
G
H

path cost

[A, C] 1
[A, B] 2
[A, D] 4

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

14

A B

D
C

F H

E

G

0 2 ? ?

4

1

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E
F
G
H

path cost

[A, B] 2
[A, D] 4

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

15

A B

D
C

F H

E

G

0 2 ? ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

path cost

[A, B] 2
[A, D] 4

[A, C, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

16

A B

D
C

F H

E

G

0 2 ? ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

path cost

[A, D] 4
[A, C, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

17

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G
H

path cost

[A, D] 4
[A, B, F] 4
[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

18

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G
H

path cost

[A, B, F] 4
[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

19

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

20

A B

D
C

F H

E

G

0 2 4 7

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H ≤ 7 F

path cost

[A, B, F, H] 7
[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

21

A B

D
C

F H

E

G

0 2 4 7

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H Y 7 F

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

22

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

path cost

[A, B, F, H, G] 8
[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

23

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

24

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, B, F, H, G, E] 11
[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

25

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

26

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, B, E] 12

priority queue

UW CSE 331 Autumn 2021



Dijkstra’s algorithm – paths from A  

27

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

priority queue

UW CSE 331 Autumn 2021

Now we know the cost and 
path to every single node by 
looking at the table!



Dijkstra’s algorithm - Worksheet

28UW CSE 331 Autumn 2021

Now it’s your turn!



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

29UW CSE 331 Autumn 2021



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

30UW CSE 331 Autumn 2021

What else?



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

31UW CSE 331 Autumn 2021

All nodes not reached yet are 
farther away than those 
reached so far



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

32UW CSE 331 Autumn 2021

All nodes not reached yet are 
farther away than those 
reached so far

The queue contains all paths 
formed by adding 1 more 
edge to a node we already 
reached.



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.

add a path from start to itself to active

<inv: All paths found so far are shortest paths & … >
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:

return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active

add minDest to finished

33UW CSE 331 Autumn 2021

It follows from our updated 
invariant that this path is 
the shortest path (assuming 
node is not in finished)



Model-View-Controller

• Model-View-Controller (MVC) is a ubiquitous design pattern:
– The model abstracts + represents the application’s data.
– The view provides a user interface to display the application data.
– The controller handles user input to affect the application.

34UW CSE 331 Autumn 2021



Model-View-Controller: Example

• Accessing my Google Drive files through my laptop and my phone

35UW CSE 331 Autumn 2021

Laptop Phone

View: The screen displays options for me to select files

Control: Get input selection from 
mouse/keyboard

Control: Get input selection from 
touch sensor

Control: Request the selected file from Google Drive

Model: Google Drive sends back the request file to my device

Control: Receive the file and pass it to View

View: The screen displays the file



HW 7 – Model-View-Controller

• HW7 is an MVC application, with much given as starter code.
– View: pathfinder.textInterface.TextInterfaceView
– Controller: pathfinder.textInterface.TextInterfaceController

• You will need to fill out the code in pathfinder.CampusMap.
– Since your code implements the model functionality

36UW CSE 331 Autumn 2021



HW7: text-based View-Controller

• TextInterfaceView

– Displays output to users from the result received from 
TextInterfaceController.

– Receives input from users.
• Does not process anything; directly pass the input to the 
TextInterfaceController to process.

• TextInterfaceController
– Process the passed input from the TextInterfaceView

• Include talking to the Model (the graph & supporting code)
– Give the processed result back to the TextInterfaceView to 

display to users.

* HW9 will be using the same Model but different and more sophisticated View and Controller

37UW CSE 331 Autumn 2021



Campus dataset

• Two CSV files in src/main/resources/data:
– campus_buildings.csv – building entrances on campus
– campus_paths.csv – straight-line walkways on campus

• Exact points on campus identified with (x, y) coordinates
– Pixels on a map of campus (campus_map.jpg, next to CSV files)
– Position (0, 0), the origin, is the top left corner of the map

• Parser in starter code: pathfinder.parser.CampusPathsParser
– CampusBuilding object for each entry of campus_buildings.csv
– CampusPath object for each entry of campus_paths.csv

38UW CSE 331 Autumn 2021



Campus dataset – coordinate plane

39

x

y

campus_map.jpg
UW CSE 331 Autumn 2021



Campus dataset – sample

• campus_buildings.CSV has entries like the following:
shortName longName x y
BGR, By George, 1671.5499, 1258.4333
MOR, Moore Hall, 2317.1749, 1859.502

• campus_paths.CSV has entries like the following:
x1 y1 x2 y2 distance
1810.0, 431.5, 1804.6429, 437.92857, 17.956615…
1810.0, 431.5, 1829.2857, 409.35714, 60.251364…

• See campus_routes.jpg for nice visual rendering of 
campus_paths.csv

40UW CSE 331 Autumn 2021



Campus dataset – demo

41UW CSE 331 Autumn 2021

• Your TA will open the starter files of HW 7.



Script testing in HW7

• Extends the test-script mechanism from HW5
– Using numeric weights instead of string labels on edges
– New command FindPath to find shortest path with Dijkstra’s algorithm
– No command like LoadGraph

• Must write the test driver (PathfinderTestDriver) yourself
– Feel free to copy pieces from GraphTestDriver in HW5

42

Command (in foo.test) Output (in foo.expected)

FindPath graph node1 noden

path from node1 to noden:
node1 to node2 with weight w1,2
node2 to node3 with weight w2,3
...
noden-1 to noden with weight wn-1,n
total cost: w

... ...

UW CSE 331 Autumn 2021


