
CSE 331

Software Design & Implementation

Autumn 2021

Section 2 – Development Tools

UW CSE 331 Autumn 2021 1



Administrivia

• HW1 due Monday at 5:00 PM

• HW3 due Thursday, 10/14 at 11PM

• HW2 out soon, due 10/18 at 5 PM

• Come to office hours!

UW CSE 331 Autumn 2021 2



Course resources

• We can’t cover everything in an hour

• Read documentation: cs.uw.edu/331 > “Resources” tab

− “Project Software Setup”

− “Editing, Compiling, Running, and Testing Java Programs”

− “Version Control (Git) Reference”

− “Assignment Submission”

• The resources page is a treasure trove of helpful information!

• And we’ve got videos.

− Look for the Videos links on the resources page below Tools.

− Helpful if you’re still stuck after the section demo.

UW CSE 331 Autumn 2021 3

https://cs.uw.edu/331


Software You Need

• Java 11

− adoptopenjdk.net

− Choose “OpenJDK 11” and “HotSpot”

− Windows: Select ”Add to PATH” and “Fix Registry” during install

• IntelliJ

− jetbrains.com/idea

− Recommended: Ultimate version

• Comes in handy later in the course

• Free for students, see course website for link to license

− Install the latest version

• Git

− git-scm.com

− (Slightly newer version than the XCode command line tools on macOS)

− Comes with Git Bash on Windows – important!

UW CSE 331 Autumn 2021 4



Warning: You must use JDK 11+

• Must use JDK version 11 or later

− Be sure that’s what you have installed!

− Download links in Resources webpage

− Use the AdoptOpenJDK installers (only)

• An out-of-date JDK can lead to very confusing bugs

− No fun for either of us!

UW CSE 331 Autumn 2021 5



IntelliJ

• The officially supported editor for this course

− Full setup instructions in “Project Software Setup” handout

• A modern IDE, commonly used in industry

− Get the “Ultimate” version – free license for education use

• IDE = “Integrated Development Environment”

− Auto completion

− Version-control (git) integration

− Debugger integration

− …and an assortment of other fun features

• Necessary functionality covered in course documentation

− “Editing, Compiling, Running, and Testing Java Programs”

UW CSE 331 Autumn 2021 6



Version control

• Also called source control, revision control

• System to track changes in a project codebase

− Unit of change ~ lines inserted/deleted across some files

• Essential for managing software projects

− Maintain a history of code changes

− Revert to an older project state

− Merge changes from multiple sources

• We’ll use git and GitLab in this course, but alternatives exist

− Subversion, Mercurial, CVS

− Email, dropbox, thumbdrives (don’t even think of doing this!)

UW CSE 331 Autumn 2021 7



Version control concepts

• A repository (“repo”) stores a project’s entire codebase

− Stored in multiple places and synchronized over the internet

− Tracks the files themselves and changes to them over time

• Each developer clones her own working copy of the repo

− Makes a local copy of the codebase, on her laptop/computer

− She modifies these files directly, with her IDE or text editor

• Each developer commits changes to her working copy

− Saves “a commit” to version control history

− Affects only the local working copy

− Must synchronize with remote repo to share commits each way

UW CSE 331 Autumn 2021 8



Essential git concepts

• commit

− Saves (a subset of) the changes to the local 

repository

− Has a brief message summarizing changes

• push

− Sends local commits to the repository (on GitLab)

− Allows other computers to then “pull” those 

commits/changes, see below.

• pull

− Synchronizes working copy to match the remote 

repository

− clone = the first pull, also sets up the repository for 

the first time

UW CSE 331 Autumn 2021 9



Diagram of git usage

UW CSE 331 Autumn 2021 10

GitLab

Course Staff

Grading

New Assignments

Staff Tests

HW Feedback

Starter Code

push

pull

HW Solutions

Working 

Copy

commit

Student

Working on 

Assignments

“remote”

Backs Up Code

Sharing Between Computers

Working 

Copypull

push

commit



Your GitLab repository

• We’ll push starter code to your repo for each homework

− After HW3, you’ll get it by pulling

• Commit and push your code as you do the assignment

− Recommended process: edit, test, pull, commit, push

• Submit homework N by creating a tag “hwN-final”

− Check that you’ve committed and pushed all your work!

− Do not attach a message with the tag

− Example: “hw3-final” for HW3

• Without the right tag, your homework might not be graded!

UW CSE 331 Autumn 2021 11



Example commit history

UW CSE 331 Autumn 2021 12

time

A.java

B.java

A.java

B.java

A.java



Best practices when using git

• Pull/Commit/Push your code early and often!!

− You really, really don’t want to deal with merge conflicts

− Best to pull before you commit (in 331, industry is more complex)

− Keep your repo up-to-date as much as possible

• Do not rename files and folders that we gave you

− That will mess up our grading process

− It would be a silly reason to lose points!

• Use this repo just for homework

UW CSE 331 Autumn 2021 13



Gradle: what is it

• Gradle is a tool for build automation

− Simplifies compiling, running, and testing a software project

− No need to install: included in the starter code!

• Configured by the file build.gradle (and others) in your repo

− You shouldn’t modify this (can interfere with grading)!

− Ask the course staff for help if it got messed up accidentally.

• IntelliJ has built-in support to work with Gradle

• Gradle is how you run/validate your code on attu

UW CSE 331 Autumn 2021 14



Gradle: how to use it

• You can use Gradle at the command line or in IntelliJ (recommended)

− Every homework assignment has a “name” – HW3 is “hw-setup”

UW CSE 331 Autumn 2021 15

HW Name

Tasks

IntelliJ 

Right 

Sidebar

• Double-click tasks to run 

them.

• Make sure you’re in the 

right assignment’s task 

list, each one has its own 

tasks. IntelliJ Gradle Panel



Let’s Try It!

Get your computers out and start up 

Terminal (macOS) or Git Bash (Windows)

UW CSE 331 Autumn 2021 16



Getting Connected to GitLab

− Generate an RSA key pair:

ssh-keygen -o -t rsa -b 4096 -C "your@email.com"

• The (-C) comment can be any string, make it something you’ll 

recognize.

• Press enter when asked for a file name (use default)

• No passphrase

• You’ll be told: “Your public key has been saved in (…)”

− Copy the generated public key (use the file name of the public key 

from above, if different)
cat ~/.ssh/id_rsa.pub | clip (Windows)

cat ~/.ssh/id_rsa.pub (macOS/linux)

− macOS/linux: Select and copy the output of running the cat

command

UW CSE 331 Autumn 2021 17



Getting Connected to GitLab (2)

UW CSE 331 Autumn 2021 18

− Paste that into your GitLab account, under “Settings” > “SSH Key”

• Sign in at: gitlab.cs.washington.edu

− In Terminal/Git Bash, type the following to check that you’re set up:

ssh -T git@gitlab.cs.washington.edu

− Getting “The authenticity of host (…) can’t be established”?

• Type yes – only a one-time thing, the GitLab server is just 

unfamiliar to your computer.

− Should get a welcome message back!



Cloning Your Repo 

UW CSE 331 Autumn 2021 19

• In GitLab, open your project page and get the SSH clone URL

gitlab.cs.washington.edu/cse331-20au-students/cse331-20au-NETID

• Blue ”Clone” button in top right: copy the “Clone with SSH” URL

• Open IntelliJ 

− You don’t need any plugins or launcher scripts, skip those steps

• Choose “Get from Version Control”

• Choose 'Git', paste the clone link from earlier in 'URL', and choose a 

place on your computer in 'Directory' where you want to keep your 

331 work.

• Click Clone



Importing Into IntelliJ

UW CSE 331 Autumn 2021 20

• Need to set up project SDK: Select Java 11

− File > Project Structure > Project

• Missing?

− Click New > JDK, IntelliJ should auto-find your Java 11 install

− Can’t find it? Check your Java installation and ask for help.



Importing Into IntelliJ (2)

UW CSE 331 Autumn 2021 21

• Also, need to check some Gradle settings

• IntelliJ IDEA > Preferences (macOS), File > Settings (Windows/linux)

• Build, Execution Deployment > Build Tools > Gradle

Does yours look different 

from this screenshot?

----

Make sure you are using 

the latest version of 

IntelliJ – Gradle support 

has changed recently.



Development Workflow Demo

1. Open the first part of the hw3 starter code:

− hw-setup/src/main/java/setup/HolaWorld.java

2. Fix the two bugs in this code: Lines 38 & 45

3. Run the code using Gradle:

− Open the Gradle panel on the right edge of IntelliJ

− Provided a runHolaWorld Gradle task under the “homework” group

− cse331 > hw-setup > Tasks > homework > runHolaWorld

4. Double-click to run the task: see the output at the bottom!

− Gradle automatically compiles your code and then runs it.

UW CSE 331 Autumn 2021 22



Development Workflow Demo (2)

We’ve finished part 3 of the assignment (!) – let’s commit this code to save it.

1. “pull” to make sure we have any updates that happened while we were editing: 

− VCS > Git > Pull (use the default options)

2. “commit” the changes to save them to our local copy of the repository: 

− VCS > Commit

− Check the boxes for the file changes you want to include in the 

commit (usually all files)

− Uncheck everything under “Before Commit” (just extra IntelliJ warnings, you 

can keep them but it adds extra steps to the commit). You may need to click 

the settings wheel in the bottom right of the commit window to find the 

"Before Commit" section

− Enter a short (< 25 words), helpful description of the changes in “Commit 

Message”

3. ”push” the changes to tell GitLab about the new commit: 

− VCS > Git > Push

UW CSE 331 Autumn 2021 23



Development Workflow Demo (3)

In general, only do this at the end of an assignment, but let’s see how it 

works with a practice tag.

1. Create the tag with the correct name. For now, use section-demo. See 

assignment specs for the tags to use for each assignment.

− VCS > Git > Tag

− Enter a tag name. (Tags are case-sensitive.)

− DO NOT include a message. (This can make the tags difficult to 

move later, if you need to.)

− Tags are attached to the current commit (usually the most recent 

one you created, so you need to create tags after creating the 

commit you want to tag).

2. “push” the changes to tell GitLab about the tag (so the staff can see it!)

− VCS > Git > Push

− Make sure “Push Tags” (bottom left) is checked. (Choose “All”)

UW CSE 331 Autumn 2021 24



Development Workflow Demo (4)

Need to check that our assignment was submitted successfully. Checks 

happen in two places (always do both checks):

1) attu

− Run your code in the same place we’ll be grading it!

− Sign into attu: ssh NETID@attu.cs.washington.edu

• Clone your repo, checkout tag, and run the gradle task

• See Assignment Submission handout for instructions.

− Since you’re testing on a new clone, it’ll only have the files that are in 

git.

• Makes sure you didn’t miss any files when making commits. 

(Common error in 331, can make assignments impossible to 

grade.)

UW CSE 331 Autumn 2021 25



Development Workflow Demo (5)

2) GitLab Runners:

− Triggered when you push the tag

• Don’t see a runner? Make sure you have the right tag name! 

(Tags are case-sensitive)

− Runs some sanity checks (build, javadoc, and your tests) to look for 

common errors.

− If your runner fails, you should definitely fix it, then move the tag 

and check the runner again.

− Open your GitLab project online, go to CI/CD → Pipelines

− For section-demo, you’ll see a message and the pipeline should 

pass.

− For actual assignments, you’ll see it run checks on your 

assignment, then it’ll either pass or fail and print an error message 

on failure.

UW CSE 331 Autumn 2021 26



Important Handouts

https://cs.uw.edu/331/resources.html

• Project Software Setup handout

− Important settings for IntelliJ (you need to set these)

− Running your code on attu, in a virtual machine, or on remote 

desktop.

• Running/Compiling/Testing/Editing

− How to use Gradle to run automated tests and see test results in 

IntelliJ.

− [Optional] SpotBugs: A useful tool for finding bugs in your code

• Version Control handout

− Git best practices, instructions, and more advanced usage

• Assignment Submission handout

− Creating and moving tags, using late days, GitLab validation

UW CSE 331 Autumn 2021 27


