
CSE 331
Software Design & Implementation

James Wilcox
Autumn 2021

Servers



Event-driven programming

An event-driven program is designed to wait for events:
– program initializes then enters the event loop
– abstractly:

do {
e = getNextEvent();
process event e;

} while (e != quit);

2CSE 331 Autumn 2021



Server Programming

• Servers sit around waiting for events like:
– new client connections
– new data from the client (high scale servers)

• Simple version (normal scale):

while (true) {
wait for a client to connect
process the request; send a response back

}

– probably want to use a new thread for processing
– high scale web servers might look quite different

3CSE 331 Autumn 2021



Example: Chat Server

ChatServer.java

4CSE 331 Autumn 2021



Server Sockets & Ports

• Server creates a “server socket” and waits for a connection
– each connection comes with an individual socket
– allows reading from / writing to that client

• Servers on the same machine distinguished by a port number
– numbers below 1024 require admin privileges

ServerSocket ssock = new ServerSocket(80);

• Clients indicate the port when trying to connect:

Socket sock = new Socket(“attu”, 80);

5CSE 331 Autumn 2021



Ports & Protocols

• Sockets API allows reading & writing of byte data
– like the File API

• Each server can define its own protocol for communication
– the language it uses to speak to clients

• By convention, ports are associated with particular protocols
– 80 = HTTP
– 443 = HTTPS
– 25 = SMTP relay
– …

• Client that wants to talk HTTP can try connecting to 80
6CSE 331 Autumn 2021



Protocols

• HTTP (Hyper-Text Transfer Protocol) is the most important
– initially created for retrieving HTML documents
– simple, text-based protocol

• Trend moving away from new protocols toward re-use of HTTP
– Google (2010s) used HTTP for almost everything

• Allows for re-use of libraries for creating HTTP servers…
– use of libraries reduces bugs, saves time, etc.
– do not write your own HTTP server

7CSE 331 Autumn 2021



HTTP



HTTP Request 1

GET /index.html HTTP/1.1

• Request ends with a blank line

• Between GET and blank are optional headers of the form

Name: Value

– similar to Java properties files
– common example would be User-Agent to describe client

CSE 331 Autumn 2021 9



HTTP Response 1

HTTP/1.1 200 OK
content-length: 124

content-type: text/html; charset=UTF-8

Date: Wed, 27 May 2020 18:30:00 GMT

Connection: close

<html>

…

• 200 status code indicates successful
• 400s for error that is the client’s fault
• 500s for errors on the server’s end

CSE 331 Autumn 2021 10



Demo

(command-line HTTP request)

11CSE 331 Autumn 2021



HTTP Request 2

POST /register HTTP/1.1
content-type: application/x-www-form-urlencoded

content-length: 25

fname=Kevin&userid=kevinz

• POST request includes client content

• 25 bytes of content after the blank line
– newlines are just another byte

CSE 331 Autumn 2021 12



HTTP

• GET & POST requests are by far the most common
– other types like DELETE also exist

• See CSE 333 for a more complete discussion
– (no need to memorize the details here)

CSE 331 Autumn 2021 13



Uniform Resource Locators (URLs)

• Tells the browser what to get and how to get it

http://attu:8080/index.html

Connect to server attu on port 8080

Send GET request

GET /index.html HTTP/1.1

…

CSE 331 Autumn 2021 14



Uniform Resource Locators (URLs)

• Port is optional (default is 80 for HTTP)

• Optional “?a=b&c=d” part of path is called query string
– “&”-separated key=value pairs
– useful for passing arguments to the server-side code…

• Fragment is only kept in the browser
– client can use this to record its place in the document
– allows back/forward buttons to work on a single page

CSE 331 Autumn 2021 15

http://attu:8080/cse331/test?a=b&c=d#whatever

protocol hostname port path query string fragment


