CSE 331
Software Design & Implementation

James Wilcox
Autumn 2021
Testing




How do we ensure correctness?

Best practice: use three techniques

1. Tools

— e.g., type checking, @Override, libraries, etc.
2. Inspection

— think through your code carefully

— have another person review your code
3. Testing

— usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Autumn 2021



What can you learn from testing?

“Program testing can be used to show
the presence of bugs, but never to
show their absence!”

Edsgar Dijkstra

Notes on Structured Programming,
1970

Testing is essential but it is insufficient by itself

Only reasoning can prove there are no bugs. Yet...

CSE 331 Autumn 2021



How do we ensure correctness?

“Beware of bugs in the above code;
| have only proved it correct, not tried it.”
-Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

No single activity or approach can guarantee correctness

We need tools and inspection and testing to ensure correctness

CSE 331 Autumn 2021



Why you will care about testing

In all likelihood, you will be expected to test your own code

* Industry-wide trend toward developers doing more testing
— 20 years ago we had large test teams
— now, test teams are small to nonexistent

« Reasons for this change:
1. easy to update products after shipping (users are testers)
2. often lowered quality expectations (startups, games)
« some larger companies want to be more like startups

This has positive and negative effects...

CSE 331 Autumn 2021



It's hard to test your own code

Your psychology is fighting against you:
« confirmation bias

— tendency to avoid evidence that you're wrong
« operant conditioning

— programmers get cookies when the code works
— testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

CSE 331 Autumn 2021



Kinds of testing

» Testing field has terminology for different kinds of tests
— we won'’t discuss all the kinds and terms

« Here are three orthogonal dimensions [so 8 varieties total]:

— unit testing versus system/integration/end-to-end testing
« one module’s functionality versus pieces fitting together

— opaque testing versus transparent testing
 did you look at the code before writing the test?

— specification testing versus implementation testing

« test only behavior guaranteed by specification or other
behavior expected for the implementation

CSE 331 Autumn 2021



Unit Testing

* A unit test focuses on one class / module (or even less)
— could write a unit test for a single method

« Tests a single unit in isolation from all others
* Integration tests verify that the modules fit together properly

— usually don’t want these until the units are well tested
* j.e., unit tests come first

CSE 331 Autumn 2021



How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome

Run the test
3) Run with input and record the actual outcome
4) Compare actual outcome to expected outcome

CSE 331 Autumn 2021



What's So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 < x,y,z < 100,000
// returns: computes some f(x,y,Zz)
int funcl (int x, int y, int z){..}

Exhaustive testing would require 1 quadrillion cases!
— impractical even for this trivially small problem

Key problem: choosing test suite
— Large/diverse enough to provide a useful amount of validation

— (Small enough to write/run in reasonable amount of time.)
 less important... very few projects have too many tests

CSE 331 Autumn 2021 10



Approach: Partition the Input Space

|deal test suite:
|dentify sets with “same behavior”
(actual and expected)
Test at least one input from each set
(we call this set a subdomain)

Two problems:

1. Notion of same behavior is subtle
« Naive approach: execution equivalence
« Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
« |f we had it, we wouldn’t need to test

« Use heuristics to approximate cheaply
CSE 331 Autumn 2021 11



Naive Approach: Execution Equivalence

// returns: x < 0 => returns -x
// otherwise => returns x

int abs(int x) {

if (x < 0) return -x;
else return x;

All x < 0 are execution equivalent:
— Program takes same sequence of steps forany x <0

All x = 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

CSE 331 Autumn 2021

12



Execution Equivalence Can Be Wrong

// returns: x < 0 => returns -x
// otherwise => returns x

int abs(int x) {
if (x < -2) return -x;
else return x;

}

{-3, 3} does not reveal the error!
Two possible executions: x < -2 and x >= -2

Three possible behaviors:
— x<-2 0K, x =-2or x=-1(BAD)
— x>=00K

CSE 331 Autumn 2021

13



Revealing Subdomains

A subdomain is a subset of possible inputs

A subdomain is revealing for error E if either:
— every input in that subdomain triggers error E, or
— no input in that subdomain triggers error E

Need test at least one input from a revealing subdomain to find bug

— if you test one input from every revealing subdomain for E,
you are guaranteed to find the bug

The trick is to guess revealing subdomains for the errors present

— even though your reasoning says your code is correct,
make educated guesses where the bugs might be

CSE 331 Autumn 2021 14



Testing Heuristics

« Testing is essential but difficult
— want set of tests likely to reveal the bugs present
— but we don’t know where the bugs are

e QOur approach:

— split the input space into enough subsets (subdomains)
such that inputs in each one are likely all correct or incorrect

— can then take just one example from each subdomain

* Some heuristics are useful for choosing
subdomains...

CSE 331 Autumn 2021 15



Heuristics for Designing Test Suites

A good heuristic gives:

— for all errors in some class of errors E: high probability that
some subdomain is revealing for E

— not an absurdly large number of subdomains

Different heuristics target different classes of errors
— in practice, combine multiple heuristics
* (we will see several)
— a way to think about and communicate your test choices

CSE 331 Autumn 2021 16



Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is opaque: specification visible, internals hidden

Example
// returns: a > b => returns a
// a < b => returns b
// a = b => returns a

int max(int a, int b) {..}

3 cases lead to 3 tests

(4,3) =>4 (i.e. any input in the subdomain a > b)
(3,4) =>4 (i.e. any input in the subdomain a < b)
(3,3) =>3 (i.e. any input in the subdomain a = b)

CSE 331 Autumn 2021

17



Specification Testing: Advantages

Process is not influenced by component being tested
— avoids psychological biases we discussed earlier
— can only do this for your own code if you write tests first

Robust with respect to changes in implementation
— test data need not be changed when code is changed

Allows others to test the code (rare nowadays)

CSE 331 Autumn 2021 18



Heuristic: Boundary Cases

Create tests at the boundaries between subdomains

. . @ =
Edges of the “main” subdomains have a

high probability of revealing errors
— e.g., off-by-one bugs
@

Include one example on each side of the boundary

Also want to test the side edges of the subdomains...

CSE 331 Autumn 2021 19



Heuristic: Special Cases

Arithmetic
— zero
— smallest/largest values
— arithmetic overflow

Objects
— null
— zero elements
— same object passed as multiple arguments (aliasing)

All of these are common cases where bugs lurk
« you’ll find more as you encounter more bugs

CSE 331 Autumn 2021

20



Heuristic: Transparent testing

Focus on features not described by specification
— control-flow details (e.g., conditions of “if’ statements in code)
— performance optimizations
— alternate algorithms for different cases

Example: abs from before
— had different behavior > 2 and <=2

CSE 331 Autumn 2021 21



Transparent Example

There are some subdomains that opaque testing won't catch:

boolean[] primeTable = new boolean[CACHE SIZE];

boolean isPrime (int x) {
if (x > CACHE SIZE) {
for (int i=2; i <= x%/2; i++) {
if (x % 1 == 0)
return false;
}
return true;
} else {
return primeTable[x];

}

CSE 331 Autumn 2021

22



Transparent Testing: [Dis]Advantages

* Finds an important class of boundaries
— vyields useful test cases

« Consider CACHE SIZE in isPrime example
— important tests CACHE SIZE-1, CACHE SIZE, CACHE SIZE+l

— if CACHE_ SIZE is mutable, may need to test with different
CACHE_ SIZE values

Disadvantage:
— buggy code tricks you into thinking it’s right once you look at it
* (confirmation bias)
— can end up with tests having same bugs as implementation
— so also write tests before looking at the code

CSE 331 Autumn 2021 23



Pragmatics: Regression Testing

« Whenever you find a bug
— store the input that elicited that bug, plus the correct output
— add these to the test suite
— verify that the test suite fails
— fix the bug
— verify the fix

« Ensures that your fix solves the problem
— don’t add a test that succeeded to begin with!
 another reason to try to write tests before coding
* Protects against reversions that reintroduce bug

— it happened at least once, and it might happen again
(especially when trying to change the code in the future)

CSE 331 Autumn 2021

24



Summary of Heuristics

« Split subdomains on boundaries appearing in the specification

« Split subdomains on boundaries appearing in the implementation
« Test boundaries that commonly lead to errors

« Test special cases like nulls, empty arrays, 0, etc.

« Test any cases that caused bugs before (to avoid regression)

On the other hand, don't confuse volume with quality of tests

— look for revealing subdomains
— want tests in every revealing subdomain not just lots of tests

CSE 331 Autumn 2021 25



