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Autumn 2021
Lecture 4%2 — Reasoning Wrap-up




Updates

« Lots going on!
— HW1 due Monday, October 11 at 5pm
— HW3 due Thursday, October 14 at 11pm
— HW2 due the following Monday, October 18 at S5pm
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Interview Question



Sorted Matrix Search

Problem Description

Given a matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.
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Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)
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Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

< X >=x

(darker color means larger)

(One) Idea: Trace the contour between the numbers < x and > x
in each row to see if x appears.
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Sorted Matrix Search Code

J

Partial Invariant: M[i,0], ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1]
« for each i, holds for exactly one j
* holds when we are in the right spot in row i
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Sorted Matrix Search Code

J

Initialization: i

Partial Invariant: M[i,0], ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1]

How do we get the invariant to hold with i = 07?
* no easy way to initialize it so the invariant holds
* we need to search...
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Sorted Matrix Search Code

J

Initialization: i

New goal: M[0,0], ..., M[0,j-1] < x < M[O0,j], ..., M[O,n-1]
« will need a loop to find |
* Loop invariant: x < M[0,j], ..., M[O,n-1]

— weakening of the new goal

— decrease j until we get M[0,j-1] to also hold
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Sorted Matrix Search Code

J

Initialization: i
int 1 = 0,
int j = 7
_ - : . What is the easiest way to
{{ Inv: x = M[i,j], ..., M[i,n-1] }} make this hold initially?
while ( 27 )
PR

i I\)I[.i,O], oy M[Lj-1] < x < M[i,jl, ..., M[i,n-1] }}
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Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int J = n;

{ Inv: x < M,j], ..., M[i,n-1] }}
while ( 27 )

PP

i I\)I[.i,O], oy M[Lj-1] < x < M[i,jl, ..., M[i,n-1] }}
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Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int 3 = n;

{Inv: x < M[i,jl, .., M[i,n-1] 1

” >
while ( 2?2 ) When does the postcondition hold*

(Careful!)

PP

HMﬁmwwMﬁrﬂ<stﬂﬂ"”Mﬂmﬂn
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Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int 3 = n;

{Inv: x < M[ijl, ..., M[i,n-1] }
while (7 > 0 && x <= M[i,9-11])

PP

HMﬁmwwMﬁrﬂ<stﬂﬂ"”Mﬂmﬂn
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Sorted Matrix Search Code

Initialization:

int 1
{ Inv: x < M,j], ..., M[i,n-1] }}
(3 > 0 && x <= M[1i,3-1]) {

while

?7?
J
}

]

0, 7

J

1;

What goes here?

{M,0], ..., M[i,j-1] < x < MIij], ..., M[i,n-1] }}
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Sorted Matrix Search Code

J

Initialization: i

int 1 = 0, J = n;

{Inv: x £ M[ijl, ..., M[i,n-1] 1}

while (] > 0 && x <= M[1,]-1]) {
i { x<M[j], ..., M[i,n-1] and x < M[i,j-1] }}

{ x = M[ij-1], ..., M[i,n-1] }}
{x=M[ij], ..., M[i,n-1] }}
{ M[i,0], ..., M[i,j-1] < x = M[i,j], ..., M[i,n-1] }}
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Sorted Matrix Search Code

Initialization:

int 1
{ Inv: x < M,j], ..., M[i,n-1] }}
(3 > 0 && x <= M[1i,3-1]) {

while

J
}

]

0, 7

J

1;

What goes here?
Nothing!

{M,0], ..., M[i,j-1] < x < MIij], ..., M[i,n-1] }}
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Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int 3 = n;

{Inv: x < M[i,j], ..., M[i,n-1]
while (3 > 0 && x <= M[1,]-11])

j =3 - 1;
{M[I,01, ..., M[i,j-1] < x £ M[i,jl, ..., M[i,n-1] }}
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Sorted Matrix Search Code

J

That finds the right column in row 0
« can now check M[0,j] = x (if j < n)
« if not, we can move onto the next row

— X cannot be anywhere in the row if it's not at M[i,j]
—seti =1 + 1

Process continues in each row thereafter...
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Sorted Matrix Search Code

J

« Make progress by settingi = i + 1

« When iincreases, the invariant may be broken
— we have x < M[i,j] < M[i+1,j] since columns are sorted
— and M[i+1,j] < M[i +1,j+1], .., M[i +1,n-1] since rows are sorted
— sowe getx=M[i +1,j], .., M[i +1,n-1]
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Sorted Matrix Search Code

J

« Make progress by settingi = i + 1
« When iincreases, the invariant may be broken
— we have x <= M[i +1,j], .., M[i +1,n-1]
— may need to restore invariant for M[i,0], ..., M[i,j-1] < x
— decrease j until it holds again...
« when have we seen this before?
« initialization
CSE 331 Autumn 2021
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Sorted Matrix Search Code

J

« Make progress by settingi = i + 1
« When iincreases, the invariant may be broken
— we have x <= M[i +1,j], .., M[i +1,n-1]
— may need to restore invariant for M[i,0], ..., M[i,j-1] < x
— could copy and paste the same loop
e or you can do it with one copy
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Sorted Matrix Search Code

instead of int 1 =0, J = n;
[move 7 left]

{nv: M[i,01, ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1] }
while (1 != m) {
i =1+ 1;

[move 7 left]

}
we can write int 1 =0, J = n;
while (1 != m) {

[move 7 left]
{{ M[i,0], ..., M[i,j-1] < x = M[i,j], ..., M[i,n-1] }}

i =1+ 1;
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Sorted Matrix Search Code

int 1 = 0;
int jJ = n;
while (1 != m) {

{inv: x < M[i,jl, ..., M[i,n-1] }}
while (3 > 0 && x <= M[1i,3-11)
j =3 - 1;

{M[i,0], ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1] }
if (J < n && x == M[i,7])
return true;
i =1+ 1;
}

return false;
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Sorted Matrix Search Code

int 1 = 05

int J = n;

{{ Inv: x not in M[k,I] for k < i and x < M[ij], ..., M[i,n-1] }} i
while (1 != m) {

{{ Inv: x not in M[k,I] for k <iand x < M][i,j], ..., M[i,n-1] }}
while (3 > 0 && x <= M[i,3-11)
J=3 -1

{{ x not in M[k,I] for k < i and M[i,0], ..., M[i,j-1] < x < M[i,jl, .., M[i,n-1] }}

if (J < n && x == M[i,7])
return true;
i =1+ 1;
}

return false;
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Worksheet



Reasoning Summary



Reasoning Summary

Checking correctness can be a mechanical process
— using forward or backward reasoning

This requires that loop invariants are provided
— those cannot be produced automatically

As long as you document your loop invariants,
it should not be too hard for someone else to review your code
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Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:

{{ Inv: printed all the strings seen so far }}
for (String s : L)
System.out.println(s);
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Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:
// Print the strings in L, one per line.

for (String s : L)
System.out.println(s);
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Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:

{{ Inv: B has 2*x + 1 for each element x removed so far }}
for (int x : A)
B.add(2*x + 1);
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Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:

// Set B = 2*A + 1 (element-wise)
for (int x : A)
B.add(2*x + 1);
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Documenting Loop Invariants

« Write down loop invariants for all non-trivial code
« They are often best avoided for “for each” loops.

* Invariants are more helpful when a variable incorporates
information from muiltiple iterations

- eg., {s=A[0]+...+Ali-1] }}

Use your best judgement!
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Reasoning Summary

You can check correctness by reasoning alone
Correctness: tools, inspection, testing
— reasoning through your own code

— do code reviews

Practice!
— essential skill for professional programmers
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Reasoning Summary

* You will eventually do this in your head for most code

* Formalism remains useful
— especially tricky problems

— interview questions (often tricky)
» see last example...
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Next Topic...



A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc (int[] arr, int n) {
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One Solution

int maxLoc (int[] arr, int n) {
int maxIndex = O0;
int maxValue = arr|[0];
// Inv: maxValue = max of arr[0] .. arr[i-1] and
// maxValue = arr[maxIndex]
for (int 1 = 1; 1 < n; i++) {
if (arr[i] > maxValue) {

maxIndex = 1i;
maxValue = arr[i]; |s this code correct?
} What if n = 0?
} What if n > arr.length?

return maxIndex; . :
What if there are two maximums?

CSE 331 Autumn 2021 37



A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc (int[] arr, int n) {

Could we write a specification so that this is a correct solution?
— throw I1legalArgumentExceptionifn <=0
— throw ArrayOutOfBoundsException if n > arr.length

— return smallest index achieving maximum
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Morals

You can all write the code correctly

Writing the specification was harder than the code
— multiple choices for the “right” specification
» must carefully think through corner cases
— once the specification is chosen, code is straightforward
— (both of those will be recurrent themes)

Some math (e.g. “if n <= 0”) often shows up in specifications
— English (“if n is less or equal to than 07) is often worse

CSE 331 Autumn 2021

39



How to Check Correctness

Step 1: need a specification for the function
— can’t argue correctness if we don’t know what it should do
— surprisingly difficult to write!

Step 2: determine whether the code meets the specification

— apply reasoning
— usually easy with the tools we learned
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