CSE 331
Software Design & Implementation

James Wilcox
Autumn 2021
Lecture 4%2 — Reasoning Wrap-up

Updates

« Lots going on!
— HW1 due Monday, October 11 at 5pm
— HW3 due Thursday, October 14 at 11pm
— HW2 due the following Monday, October 18 at S5pm

CSE 331 Autumn 2021

Interview Question

Sorted Matrix Search

Problem Description

Given a matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

CSE 331 Autumn 2021 4

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

CSE 331 Autumn 2021 5

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

< X >=x

(darker color means larger)

(One) Idea: Trace the contour between the numbers < x and > x
in each row to see if x appears.

CSE 331 Autumn 2021 6

Sorted Matrix Search Code

J

Partial Invariant: M[i,0], ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1]
« for each i, holds for exactly one j
* holds when we are in the right spot in row i

CSE 331 Autumn 2021

Sorted Matrix Search Code

J

Initialization: i

Partial Invariant: M[i,0], ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1]

How do we get the invariant to hold with i = 07?
* no easy way to initialize it so the invariant holds
* we need to search...

CSE 331 Autumn 2021

Sorted Matrix Search Code

J

Initialization: i

New goal: M[0,0], ..., M[0,j-1] < x < M[O0,j], ..., M[O,n-1]
« will need a loop to find |
* Loop invariant: x < M[0,j], ..., M[O,n-1]

— weakening of the new goal

— decrease j until we get M[0,j-1] to also hold

CSE 331 Autumn 2021

Sorted Matrix Search Code

J

Initialization: i
int 1 = 0,
int j = 7
_ - : . What is the easiest way to
{{ Inv: x = M[i,j], ..., M[i,n-1] }} make this hold initially?
while (27)
PR

i I\)I[.i,O], oy M[Lj-1] < x < M[i,jl, ..., M[i,n-1] }}

CSE 331 Autumn 2021 10

Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int J = n;

{ Inv: x < M,j], ..., M[i,n-1] }}
while (27)

PP

i I\)I[.i,O], oy M[Lj-1] < x < M[i,jl, ..., M[i,n-1] }}

CSE 331 Autumn 2021

11

Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int 3 = n;

{Inv: x < M[i,jl, .., M[i,n-1] 1

” >
while (2?2) When does the postcondition hold*

(Careful!)

PP

HMﬁmwwMﬁrﬂ<stﬂﬂ"”Mﬂmﬂn

CSE 331 Autumn 2021 12

Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int 3 = n;

{Inv: x < M[ijl, ..., M[i,n-1] }
while (7 > 0 && x <= M[i,9-11])

PP

HMﬁmwwMﬁrﬂ<stﬂﬂ"”Mﬂmﬂn

CSE 331 Autumn 2021

13

Sorted Matrix Search Code

Initialization:

int 1
{ Inv: x < M,j], ..., M[i,n-1] }}
(3 > 0 && x <= M[1i,3-1]) {

while

?7?
J
}

]

0, 7

J

1;

What goes here?

{M,0], ..., M[i,j-1] < x < MIij], ..., M[i,n-1] }}

CSE 331 Autumn 2021

Sorted Matrix Search Code

J

Initialization: i

int 1 = 0, J = n;

{Inv: x £ M[ijl, ..., M[i,n-1] 1}

while (] > 0 && x <= M[1,]-1]) {
i { x<M[j], ..., M[i,n-1] and x < M[i,j-1] }}

{ x = M[ij-1], ..., M[i,n-1] }}
{x=M[ij], ..., M[i,n-1] }}
{ M[i,0], ..., M[i,j-1] < x = M[i,j], ..., M[i,n-1] }}

CSE 331 Autumn 2021

2?7

3= 3 - 1; I

15

Sorted Matrix Search Code

Initialization:

int 1
{ Inv: x < M,j], ..., M[i,n-1] }}
(3 > 0 && x <= M[1i,3-1]) {

while

J
}

]

0, 7

J

1;

What goes here?
Nothing!

{M,0], ..., M[i,j-1] < x < MIij], ..., M[i,n-1] }}

CSE 331 Autumn 2021

Sorted Matrix Search Code

J

Initialization: i
int 1 = 0;
int 3 = n;

{Inv: x < M[i,j], ..., M[i,n-1]
while (3 > 0 && x <= M[1,]-11])

j =3 - 1;
{M[I,01, ..., M[i,j-1] < x £ M[i,jl, ..., M[i,n-1] }}

CSE 331 Autumn 2021

17

Sorted Matrix Search Code

J

That finds the right column in row 0
« can now check M[0,j] = x (if j < n)
« if not, we can move onto the next row

— X cannot be anywhere in the row if it's not at M[i,j]
—seti =1 + 1

Process continues in each row thereafter...

CSE 331 Autumn 2021

18

Sorted Matrix Search Code

J

« Make progress by settingi = i + 1

« When iincreases, the invariant may be broken
— we have x < M[i,j] < M[i+1,j] since columns are sorted
— and M[i+1,j] < M[i +1,j+1], .., M[i +1,n-1] since rows are sorted
— sowe getx=M[i +1,j], .., M[i +1,n-1]

CSE 331 Autumn 2021 19

Sorted Matrix Search Code

J

« Make progress by settingi = i + 1
« When iincreases, the invariant may be broken
— we have x <= M[i +1,j], .., M[i +1,n-1]
— may need to restore invariant for M[i,0], ..., M[i,j-1] < x
— decrease j until it holds again...
« when have we seen this before?
« initialization
CSE 331 Autumn 2021

20

Sorted Matrix Search Code

J

« Make progress by settingi = i + 1
« When iincreases, the invariant may be broken
— we have x <= M[i +1,j], .., M[i +1,n-1]
— may need to restore invariant for M[i,0], ..., M[i,j-1] < x
— could copy and paste the same loop
e or you can do it with one copy

CSE 331 Autumn 2021

21

Sorted Matrix Search Code

instead of int 1 =0, J = n;
[move 7 left]

{nv: M[i,01, ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1] }
while (1 != m) {
i =1+ 1;

[move 7 left]

}
we can write int 1 =0, J = n;
while (1 != m) {

[move 7 left]
{{ M[i,0], ..., M[i,j-1] < x = M[i,j], ..., M[i,n-1] }}

i =1+ 1;

CSE 331 Autumn 2021

22

Sorted Matrix Search Code

int 1 = 0;
int jJ = n;
while (1 != m) {

{inv: x < M[i,jl, ..., M[i,n-1] }}
while (3 > 0 && x <= M[1i,3-11)
j =3 - 1;

{M[i,0], ..., M[i,j-1] < x < M[i,j], ..., M[i,n-1] }
if (J < n && x == M[i,7])
return true;
i =1+ 1;
}

return false;

CSE 331 Autumn 2021

23

Sorted Matrix Search Code

int 1 = 05

int J = n;

{{ Inv: x not in M[k,I] for k < i and x < M[ij], ..., M[i,n-1] }} i
while (1 != m) {

{{ Inv: x not in M[k,I] for k <iand x < M][i,j], ..., M[i,n-1] }}
while (3 > 0 && x <= M[i,3-11)
J=3 -1

{{ x not in M[k,I] for k < i and M[i,0], ..., M[i,j-1] < x < M[i,jl, .., M[i,n-1] }}

if (J < n && x == M[i,7])
return true;
i =1+ 1;
}

return false;

CSE 331 Autumn 2021

24

Worksheet

Reasoning Summary

Reasoning Summary

Checking correctness can be a mechanical process
— using forward or backward reasoning

This requires that loop invariants are provided
— those cannot be produced automatically

As long as you document your loop invariants,
it should not be too hard for someone else to review your code

CSE 331 Autumn 2021

27

Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:

{{ Inv: printed all the strings seen so far }}
for (String s : L)
System.out.println(s);

CSE 331 Autumn 2021

28

Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:
// Print the strings in L, one per line.

for (String s : L)
System.out.println(s);

CSE 331 Autumn 2021 29

Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:

{{ Inv: B has 2*x + 1 for each element x removed so far }}
for (int x : A)
B.add(2*x + 1);

CSE 331 Autumn 2021 30

Documenting Loop Invariants

« Write down loop invariants for all non-trivial code

« They are often best avoided for “for each” loops:

// Set B = 2*A + 1 (element-wise)
for (int x : A)
B.add(2*x + 1);

CSE 331 Autumn 2021

31

Documenting Loop Invariants

« Write down loop invariants for all non-trivial code
« They are often best avoided for “for each” loops.

* Invariants are more helpful when a variable incorporates
information from muiltiple iterations

- eg., {s=A[0]+...+Ali-1] }}

Use your best judgement!

CSE 331 Autumn 2021 32

Reasoning Summary

You can check correctness by reasoning alone
Correctness: tools, inspection, testing
— reasoning through your own code

— do code reviews

Practice!
— essential skill for professional programmers

CSE 331 Autumn 2021

33

Reasoning Summary

* You will eventually do this in your head for most code

* Formalism remains useful
— especially tricky problems

— interview questions (often tricky)
» see last example...

CSE 331 Autumn 2021

34

Next Topic...

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc (int[] arr, int n) {

CSE 331 Autumn 2021 36

One Solution

int maxLoc (int[] arr, int n) {
int maxIndex = O0;
int maxValue = arr|[0];
// Inv: maxValue = max of arr[0] .. arr[i-1] and
// maxValue = arr[maxIndex]
for (int 1 = 1; 1 < n; i++) {
if (arr[i] > maxValue) {

maxIndex = 1i;
maxValue = arr[i]; |s this code correct?
} What if n = 0?
} What if n > arr.length?

return maxIndex; . :
What if there are two maximums?

CSE 331 Autumn 2021 37

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc (int[] arr, int n) {

Could we write a specification so that this is a correct solution?
— throw I1legalArgumentExceptionifn <=0
— throw ArrayOutOfBoundsException if n > arr.length

— return smallest index achieving maximum

CSE 331 Autumn 2021 38

Morals

You can all write the code correctly

Writing the specification was harder than the code
— multiple choices for the “right” specification
» must carefully think through corner cases
— once the specification is chosen, code is straightforward
— (both of those will be recurrent themes)

Some math (e.g. “if n <= 0”) often shows up in specifications
— English (“if n is less or equal to than 07) is often worse

CSE 331 Autumn 2021

39

How to Check Correctness

Step 1: need a specification for the function
— can’t argue correctness if we don’t know what it should do
— surprisingly difficult to write!

Step 2: determine whether the code meets the specification

— apply reasoning
— usually easy with the tools we learned

CSE 331 Autumn 2021

40

