Graphs II Chapter 9 in Weiss

CSE 326
Data Structures
Ruth Anderson

Graphs so far

- Representations
- Topological Sort
- Finding paths
- DFS
- BFS
- Dijkstra

3/03/2010
3

Dijkstra, Edsger Wybe

Legendary figure in computer science;

Supported teaching introductory
computer courses without computers (pencil and paper programming)

Supposedly wouldn't (until very late in life) read his e-mail; so, his staff had to
 print out messages and put them in his box.

1972 Turning Award Winner,
3/03/2010
Programming Languages, semaphores, and ...

Today's Outline

- Announcements
- Project 3 Code due Wed March 3 by 11pm
- Written Homework \#7 due Fri March 5
- Project 3 Benchmarking \& Written (and Above \& Beyond) due Fri March 5 by 11pm
- Today's Topics:
- Graphs
- Shortest Path Algorithms

Dijkstra's Algorithm

Dijkstra's Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b a 's cost $=\min (a$'s old cost, b 's cost $+\operatorname{cost}$ of $(b, a))$

3/03/2010
8

Dijkstra's Alg: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph Select the unknown node b with the lowest cost Mark b as known
For each node a adjacent to b
a 's cost $=\min (a$'s old cost, b 's cost $+\operatorname{cost}$ of $(b, a))$
Running time?

Dijkstra's Algorithm: a Greedy Algorithm

Greedy algorithms always make choices that currently seem the best

- Short-sighted - no consideration of long-term or global issues
- Locally optimal - does not always mean globally optimal!!

Correctness: The Cloud Proof

How does Dijkstra's decide which vertex to add to the Known set next???

- If path to \mathbf{B} is shortest, path to \mathbf{W} must be at least as long
(or else we would have picked $\mathbf{\mathrm { w }}$ as the next vertex)
- 3/3829atly path through \mathbf{W} to \mathbf{B} cannot be any shorter!

Dijkstra's Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition for correctness:
- shortest path from source vertex to itself is 0
- cost of going to adjacent nodes is at most edge weights
- cheapest of these must be shortest path to that node
- update paths for new node and continue picking cheapest
$\underset{\text { 3/03/2010 }}{\text { path }}$

Correctness: Inside the Cloud

Prove by induction on \# of nodes in the cloud: Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct shortest path
Inductive step: Only when we prove the shortest path to some node \boldsymbol{v} (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra's algorithm not work?

Negative-weight edges

- Why doesn't Dijkstra's work on graphs with negative-weight edges?
- Any ideas on how we could fix this?

The Trouble with Negative Weight Cycles

What's the shortest path from A to E?
Problem?

Analysis

- Total running time for Dijkstra's:
$\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right)$
(linear scan)
$\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|) \quad$ (heaps)

What if we want to find the shortest path from each point to ALL other points?

