Graphs
Chapter 9 in Weiss

CSE 326
Data Structures
Ruth Anderson

2/26/2010

Today'’s Outline

¢ Announcements
— Written Homework #6 due NOW
— Project 3 Code due Mon March 1 by 11pm

— Project 3 Benchmarking & Written due Thurs
March 4 by 11pm

» Today’s Topics:
— Sorting
— Graphs

2/26/2010

Graph... ADT?

¢ Not quite an ADT...
operations not clear

. . Har, QLuke
« A formalism for representing (b}/
relationships between objects

Leia
GraphG = (V,E)
— Set of vertices:
V ={v Vv,V ,} V={ Han, Leia, Luke}
— Set of edges: E={(Luke, Leia),
E={e €, (Han, Leia),

(Leia , Han)}
where eacle; connects two

vertices(V ;1 ,V ;)
2/26/2010

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first cgn
be the last):

p = {Seattle, Salt Lake City, San Francisco, Dallas
p = {Seattle, Salt Lake City, Dallas, San Francis®eattle}

A cycleis a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francis®eattle}
p = {Seattle, Salt Lake City, Seattle, San FramziSeattle}

A simple cycleis a cycle that repeats no vertices except
that the first vertex is also the last (in undieect
graphs, no edge can be repeated)

2/26/2010

Graph Definitions

In directed graphs, edges have a specific direction:

Hanm j) Luke

Leia
In undirected graphs, they don't (edges are two-way):
Han Luke
Leia
visadjacenttouif (uv) 0OE

2/26/2010

Trees as Graphs

« Every tree is a graph! (&)
* Not all graphs are trees! ®) O
A graph is a tree if ® 6 6

— There areno cycles

(directed or undirected) e G
— There is gath from the

rootto every node

2/26/2010

Directed Acyclic Graphs (DAGS)

DAGs are directed
graphs with no
(directed) cycles.

Aside:If program call-
graphisa DAG, then all
procedure callscan bein-
lined

main()

mult()

add()

\

access() O read()

Graph Representations

Han% jLuke

0. List of vertices + list of edges

1. 2-D matrix of vertices (marking edges in thiés}e

“adjacency matrix”
2. List of vertices each with a list of adj
“adjacency list”

Things we might want to do:

* iterate over vertices

* iterate over edges

* iterate over vertices adj. to a vertex

s
Leia

aceattices

(%]

Vertices and edge
may be labeled

2/26/2010 7

~

Representation 1: Adjacency Matri

A V] x |V| array in which an element
(u,v) istrue if and only if there is an edge
fromutov

Han
HarQ_\ Luke
Luke

Leia

Han Luke Leia

Leia

space requirements:
2/26/2010 runtime: N

Representation
 adjacencyist:

AW N P

2/26/2010 11

» check whether an edge exists

2/26/2010 8

Representation
« adjacencymatrix:

1 O—®
i é \

_ | weight ,if (u, vy OE
- 0 Jif (u o v) OE

AluIM

2/26/2010 10

Representation 2: Adjacency List

A |V| -ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han
Han Luke
Luke
Leia

Leia

space requirements:
2/26/2010 runtime: 12

Good match?

List of edges |Adjacency Adjacency list
and list of matrix
vertices

Iterate over
vertices

Iterate over
edges
Check if edge
exists

Iterate over
vertices
adjacentto a

vertex

Some Applications:
Moving Around Washington

Bellingham

Olympia

Yakima Richland Pullman

What's theshortest way to get from Seattle to Pullman?
Edge labels:

2/26/2010 14

Some Applications:
Moving Around Washington

Bellingham

Spokane

Richland Pullman

Vancouver

What's thefastest way to get from Seattle to Pullman?
Edge labels:

2/26/2010 15

Some Applications:
Reliability of Communication

Bellingham

Vancouver

If Wenatchee'’s phone exchangmes down,
212612010 can Seattle still talk to Pullman? 16

Some Applications:
Bus Routes in Downtown Seattle

=
I
o+

auld
uolun o
edsuas O

MAsioniun

If we're at 3¢ and Pine, how can we get to

2/26/2010 1tand University using Metro? 17

Application: Topological Sort

Given a directed graplg = (V,E) , output all the
vertices inV such that no vertex is output before
any other vertex with an edge to it.

Isthe /output unique?

2/26/2010 18

Valid Topological Sortg

= Topological Sort: Take One

1. Label each vertex with its-degree (# of
inbound edges)
2. While there are vertices remaining:

a. Choose a vertexof in-degree zero; outputv
b. Reduce the in-degree of all vertices adjacent to
c. Remover from the list of vertices

Runtime:

2/26/2010 20

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithltsin-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = findNewVertexOfDegreeZero();
v.topologicalNum = counter;

for each w adjacent to v
w.indegree--;

2/26/2010 21

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queu® to contain all in-degree zero
vertices
3. WhileQ not empty
a. v=Q.dequeue; outpuwt
b. Reduce the in-degree of all vertices adjacent to
c. If new in-degree of any such verteis zero

Q.enqueue()
Note could use a stack, list, set,
box, ... instead of a queue
Runtime:
2/26/2010 22

void Graph::topsort(){
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w
labelEachVertexWithltsIn-degree();

g.makeEmpty(); intialize the
for each vertex v queue
if (v.indegree ==0)
while ('q.isEmpty()){ get a vertex with
v = g.dequeue(); indegree 0

g.enqueue(v);
v.topologicalNum = ++counter;
for each w adjacent to v

if (--w.indegree == 0) insert new
g.enqueue(w); eligible
} vertices
}
Runtime:

ime:
2/26/2010 23

Graph Traversals

» Breadth-first search (and depth-first search) work
arbitrary (directed or undirected) graphs - not just
mazes!

— Must mark visited vertices so you do not go imardinite
loop!

« Either can be used to determine connectivity:

— Is there a path between two given vertices?
— Is the graph (weakly) connected?

* Which one:
— Uses a queue?
— Uses a stack?

— Always finds theshortest patiffor unweighted graphs)?
2/26/2010 2

Graph Connectivity

Undirected graphs amnnected if there is a path between any two
vertices

Directed graphs argrongly connected if there is a path from any
one vertex to any other

Directed graphs aneeakly connected if there is a path between any|
two verticesjgnoring direction

A complete graph has an edge between every pair of virtices
2/26/2010 25

Single Sourc&hortest Paths (SSSH)

Given a graplG, edge costs;;, and vertess,
find the shortest paths frogto all vertices in G.

— Is this harder or easier than the previous proBlem

2/26/2010 27

Variations of SSSP

— Weighted vs. unweighted

— Directed vs undirected

— Cyclic vs. acyclic

— Positive weights only vs. negative weights allowed
— Shortest path vs. longest path

2/26/2010 29

The Shortest Path Problem

Given a grapl, edge costs, ;, and vertices
andt in G, find the shortest path frosto t.

Forapatp=vy Vv, Vs ... v
— unweighted length of pathp = k (a.k.a.length)
— weighted length of pathp = X 4 G .1 (@.K.acost)

Path length equals path cost when ?

2/26/2010 26

All Pairs Shortest Paths (APSP)

Given a graplG and edge costs;, find the
shortest paths between all paifsvertices in G.

— Is this harder or easier than SSSP?

— Could we use SSSP as a subroutine to solve this?

2/26/2010 28

Applications

— Network routing
— Driving directions
— Cheap flight tickets

— Critical paths in project management
(see textbook)

2/26/2010 30

SSSP: Unweighted Version

|deas?

2/26/2010

31

void Graph::unweighted (Vertex s){
Queue q(NUM_VERTICES);
Vertex v, w;
g.enqueue(s);
s.dist =0;

while ('q.isEmpty()){

v = g.dequeue();
for each w adjacent to v .
if (w.dist == INFINITY){ lists are used

each edge examined
«~| at most once — if adjacency

w.dist =v.dist +1;
w.path =v; . each vertex enqueued
g.enqueue(w); «——| 4t most once

) —"

2/26/2010 32

