

More Definitions: Simple Paths and Cycles

- A *simple path* repeats no vertices (except that the first can be the last):
 - p = {Seattle, Salt Lake City, San Francisco, Dallas}
 - $p = \{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
- A *cycle* is a path that starts and ends at the same node: p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle} p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}
- A *simple cycle* is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

2/26/2010

Good match?			
	List of edges and list of vertices	Adjacency matrix	Adjacency list
Iterate over vertices			
Iterate over edges			
Check if edge exists			
Iterate over vertices adjacent to a vertex			

Single Source Shortest Paths (SSSP) Given a graph G, edge costs c_{i,j}, and vertex s, find the shortest paths from s to all vertices in G. – Is this harder or easier than the previous problem?

Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path

- ...

2/26/2010

29

Applications - Network routing - Driving directions - Cheap flight tickets - Critical paths in project management

 Critical paths in project management (see textbook)

- ...

2/26/2010

30

