
2/26/2010 1

Graphs
Chapter 9 in Weiss

CSE 326
Data Structures
Ruth Anderson

2/26/2010 2

Today’s Outline

• Announcements
– Written Homework #6 due NOW

– Project 3 Code due Mon March 1 by 11pm

– Project 3 Benchmarking & Written due Thurs
March 4 by 11pm

• Today’s Topics:
– Sorting

– Graphs

2/26/2010 3

Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing
relationships between objects
Graph G = (V,E)

– Set of vertices:
V = {v 1,v 2,…,v n}

– Set of edges:
E = {e 1,e 2,…,e m}
where each ei connects two
vertices (v i1 ,v i2)

Han

Leia

Luke

V = { Han, Leia , Luke }
E = {(Luke , Leia),

(Han, Leia),
(Leia , Han)}

2/26/2010 4

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):

v is adjacent to u if (u,v) ∈∈∈∈ E

Han

Leia

Luke

Han

Leia

Luke

2/26/2010 5

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected
graphs, no edge can be repeated)

2/26/2010 6

Trees as Graphs

• Every tree is a graph!

• Not all graphs are trees!

A graph is a tree if
– There are no cycles

(directed or undirected)

– There is a path from the
root to every node

A

B

D E

C

F

HG

2/26/2010 7

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program call-
graph is a DAG, then all
procedure calls can be in-
lined

2/26/2010 8

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells)

“adjacency matrix”

2. List of vertices each with a list of adjacent vertices
“adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Han

Leia

Luke

Vertices and edges
may be labeled

2/26/2010 9

Representation 1: Adjacency Matrix

A |V| x |V| array in which an element
(u,v) is true if and only if there is an edge
from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia

runtime:
space requirements:

2/26/2010 10

Representation
• adjacency matrix :

1 2 3 4

∉
∈

=
E v)(u, if ,0

E v)(u, if ,weight
 A[u][v]

1

2

3

4

1

3 4

2

2/26/2010 11

Representation
• adjacency list:

1

2

3

4

2 3 4

3

1 2

1

3 4

2

2/26/2010 12

Representation 2: Adjacency List

A |V| -ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

runtime:
space requirements:

Good match?

List of edges
and list of
vertices

Adjacency
matrix

Adjacency list

Iterate over
vertices

Iterate over
edges

Check if edge
exists

Iterate over
vertices
adjacent to a
vertex 2/26/2010 14

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

2/26/2010 15

Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

2/26/2010 16

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

2/26/2010 17

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro? 2/26/2010 18

Application: Topological Sort
Given a directed graph, G = (V,E) , output all the

vertices in V such that no vertex is output before
any other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

1

3

4

2

0

Valid Topological Sorts:

1

3

4

2

0

2/26/2010 20

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

2/26/2010 21

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;
for each w adjacent to v

w.indegree--;
}

}

2/26/2010 22

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero

vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
box, … instead of a queue

2/26/2010 23

void Graph::topsort(){
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w ;

labelEachVertexWithItsIn-degree();

q.makeEmpty();

for each vertex v

if (v.indegree == 0)

q.enqueue(v);

while (!q.isEmpty()){

v = q.dequeue();
v.topologicalNum = ++counter;

for each w adjacent to v

if (--w.indegree == 0)

q.enqueue(w);
}

}

intialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices

Runtime:
2/26/2010 24

Graph Traversals

• Breadth-first search (and depth-first search) work for
arbitrary (directed or undirected) graphs - not just
mazes!
– Must mark visited vertices so you do not go into an infinite

loop!

• Either can be used to determine connectivity:
– Is there a path between two given vertices?
– Is the graph (weakly) connected?

• Which one:
– Uses a queue?
– Uses a stack?
– Always finds the shortest path(for unweighted graphs)?

2/26/2010 25

Graph Connectivity
Undirected graphs are connected if there is a path between any two

vertices

Directed graphs are strongly connected if there is a path from any
one vertex to any other

Directed graphs are weakly connected if there is a path between any
two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

2/26/2010 26

The Shortest Path Problem
Given a graph G, edge costs ci,j, and vertices s
and t in G, find the shortest path from s to t.

For a path p = v0 v1 v2 … vk

– unweighted length of path p = k (a.k.a. length)

– weighted length of path p = ∑i=0..k-1 ci,i+1 (a.k.acost)

Path length equals path cost when ?

2/26/2010 27

Single SourceShortest Paths (SSSP)

Given a graph G, edge costs ci,j, and vertex s,
find the shortest paths from s to all vertices in G.

– Is this harder or easier than the previous problem?

2/26/2010 28

All PairsShortest Paths (APSP)

Given a graph G and edge costs ci,j, find the
shortest paths between all pairsof vertices in G.

– Is this harder or easier than SSSP?

– Could we use SSSP as a subroutine to solve this?

2/26/2010 29

Variations of SSSP

– Weighted vs. unweighted

– Directed vs undirected

– Cyclic vs. acyclic

– Positive weights only vs. negative weights allowed

– Shortest path vs. longest path

– …

2/26/2010 30

Applications

– Network routing

– Driving directions

– Cheap flight tickets

– Critical paths in project management
(see textbook)

– …

2/26/2010 31

SSSP: Unweighted Version

Ideas?

2/26/2010 32

void Graph::unweighted (Vertex s){

Queue q(NUM_VERTICES);

Vertex v, w;

q.enqueue(s);

s.dist = 0;

while (!q.isEmpty()){

v = q.dequeue();

for each w adjacent to v

if (w.dist == INFINITY){

w.dist = v.dist + 1;

w.path = v;

q.enqueue(w);

}

}

}

each edge examined
at most once – if adjacency
lists are used

each vertex enqueued
at most once

total running time: O()

