

Today's Outline

- Announcements
- Written Homework \#6 due NOW
- Project 3 Code due Mon March 1 by 11pm
- Project 3 Benchmarking \& Written due Thurs March 4 by 11pm
- Today's Topics:
- Sorting
- Graphs

Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects Graph $\mathbf{G}=(\mathbf{v}, \mathbf{E})$
- Set of vertices:
$\mathbf{v}=\left\{\mathbf{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
$\mathbf{V}=\{$ Han, Leia, Luke $\}$
- Set of edges:
$E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{m}\right\}$
$\mathrm{E}=\{($ Luke, Leia),
(Han, Leia), where each $\mathbf{e}_{\mathbf{i}}$ connects two (Leia, Han) \}
vertices ($\mathbf{v}_{\mathbf{i} 1}, \mathbf{v}_{\mathbf{i} 2}$)
2/26/2010
3

More Definitions:

 Simple Paths and CyclesA simple path repeats no vertices (except that the first can be the last):
$p=\{$ Seattle, Salt Lake City, San Francisco, Dallas $\}$
$p=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
A cycle is a path that starts and ends at the same node: $p=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$ $p=\{$ Seattle, Salt Lake City, Seattle, San Francisco, Seattle $\}$

A simple cycle is a cycle that repeats no vertices except that the first vertex is also the last (in undirected graphs, no edge can be repeated)

2/26/2010

Trees as Graphs

- Every tree is a graph!
- Not all graphs are trees!

A graph is a tree if

- There are no cycles (directed or undirected)
- There is a path from the root to every node

2/26/2010

262010

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don't (edges are two-way):

\mathbf{v} is adjacent to \mathbf{u} if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$
2/26/2010

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

Graph Representations

0 . List of vertices + list of edges
 "adjacency matrix"
2. List of vertices each with a list of adjacent vertices "adjacency list"

Things we might want to do:

- iterate over vertices

Vertices and edges may be labeled

- iterate over vertices adj. to a vertex
- check whether an edge exists

Representation

- adjacency matrix:

$\mathrm{A}[\mathrm{u}][\mathrm{v}]$

 2/26/2010
$\begin{array}{llll}(u, & v) & \in & E \\ (u, & v) & \notin & E\end{array}$
$(u, v) \notin E$

Representation

- adjacency list:

2/26/2010
11

Representation 2: Adjacency List

A $|\mathrm{v}|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

space requirements:

Good match?			
	List of edges and list of vertices	Adjacency matrix	Adjacency list
Iterate over vertices			
Iterate over edges			
Check if edge exists			
Iterate over vertices adjacent to a vertex			

Soving Around Washington


```
void Graph::topsort() {
    Vertex v, w;
    labelEachVertexWithItsIn-degree();
    for (int counter=0; counter < NUM_VERTICES;
                                    counter++) {
            v = findNewVertexOfDegreeZero();
            v.topologicalNum = counter;
            for each w adjacent to v
            w.indegree--;
        }
}
    2/26/2010
```

void Graph::topsort() {
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
labelEachVertexWithItsIn-degree();
for each vertex v
if (v.indegree == 0)
q. enqueue (v) ;
while (!q.isEmpty()){ get a vertex with
v = q.dequeue(); {}\quad\begin{array}{r}{\mathrm{ indegree 0}}
v.topologicalNum = ++counter;
for each w adjacent to v
if (--w.indegree == 0)
q.enqueue(w);
}
}
Runtime:
2/26/2010

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
- Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
- Is there a path between two given vertices?
- Is the graph (weakly) connected?
- Which one:
- Uses a queue?
- Uses a stack?
$\underset{2 / 26 / 2010}{-}$ Always finds the shortest path (for unweighted graphs)?
2/26/2010
24

Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i, j}$, and vertex s, find the shortest paths from s to all vertices in G.

- Is this harder or easier than the previous problem?

Variations of SSSP

- Weighted vs. unweighted
- Directed vs undirected
- Cyclic vs. acyclic
- Positive weights only vs. negative weights allowed
- Shortest path vs. longest path
- ...

The Shortest Path Problem

Given a graph G, edge costs $c_{i, j}$, and vertices s and t in G, find the shortest path from s to t.

For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$

- unweighted length of path $p=k$
(a.k.a. length)
- weighted length of path $p=\sum_{i=0 . k-1} c_{i, i+1}$ (a.k.a cost)

Path length equals path cost when ?

2/26/2010
26

All Pairs Shortest Paths (APSP)

Given a graph G and edge costs $c_{i, j}$, find the shortest paths between all pairs of vertices in G.

- Is this harder or easier than SSSP?
- Could we use SSSP as a subroutine to solve this?

Applications

- Network routing
- Driving directions
- Cheap flight tickets
- Critical paths in project management (see textbook)
- ...

SSSP: Unweighted Version	
Ideas?	

```
void Graph::unweighted (Vertex s){
    Queue q(NUM_VERTICES)
        Vertex v, w;
        q.enqueue(s);
        s.dist = 0;
        while (!q.isEmpty()){
        v = q.dequeue();
        for each w adjacent to v at most once - if adjacency
            if (w.dist == INFINITY) { lists are used
                w.dist = v.dist + 1;
                w.path = v;
                q. enqueue (w); }~\mathrm{ at most once 
                }
            }
    }
}6/2010```

