

Why Sort?

2/24/2010
3

Insertion Sort: Idea

- At the $k^{\text {th }}$ step, put the $k^{\text {th }}$ input element in the correct place among the first k elements
- Result: After the $k^{\text {th }}$ step, the first k elements are sorted.

Runtime:
worst case
best case
average case

Today's Outline

- Announcements
- Written Homework \#6 due Friday 2/26 at the beginning of lecture
- Project 3 Code due Mon March 1 by 11pm
- Today's Topics:
- Sorting

Sorting: The Big Picture

Given n comparable elements in an array, sort them in an increasing (or decreasing) order.

Selection Sort: Idea

- Find the smallest element, put it $1^{\text {st }}$
- Find the next smallest element, put it $2^{\text {nd }}$
- Find the next smallest, put it $3^{\text {rd }}$
- And so on ...

```
Student Activity
Mystery(int array a[]) {
    for (int p = 1; p < length; p++) {
        int tmp = a[p];
        for (int j = p; j > 0 && tmp < a[j-1]; j--)
                a[j] = a[j-1];
        a[j] = tmp;
    }
}
    What sort is this?
    2/24/2010
    What is its
    running time?
        Best?
        Avg?
        Worst?
        Runtime:
        worst case
        best case
2/24/2010 average case

\section*{Divide and conquer}
- A common and important technique in algorithms
- Divide problem into parts
- Solve parts
- Merge solutions


\section*{Divide and Conquer Sorting}
- MergeSort:
- Divide array into two halves
- Recursively sort left and right halves
- Merge halves
- QuickSort:
- Partition array into small items and large items
- Recursively sort the two smaller portions

Merge Sort: Complexity


\section*{Quicksort}
- Uses divide and conquer
- Doesn't require \(\mathrm{O}(\mathrm{N})\) extra space like MergeSort
- Partition into left and right
- Left less than pivot
- Right greater than pivot
- Recursively sort left and right
- Concatenate left and right


\section*{The steps of QuickSort}


\section*{Selecting the pivot}
- Ideas?


\section*{QuickSort:} Best case complexity


\section*{Student Activity \\ Recurrence Relations}

Write the recurrence relation for QuickSort:
- Best Case:
- Worst Case:

\section*{QuickSort:}

Worst case complexity

\section*{QuickSort: Average case complexity}

Turns out to be \(\mathrm{O}(n \log n)\)
See Section 7.7.5 for an idea of the proof. Don't need to know proof details for this course.

\section*{Quicksort Complexity}
- Worst case: \(\mathrm{O}\left(\mathrm{n}^{2}\right)\)
- Best case: \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\)
- Average Case: \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\)

\section*{Features of Sorting Algorithms}
- In-place
- Sorted items occupy the same space as the original items. (No copying required, only \(\mathrm{O}(1)\) extra space if any.)
- Stable
- Items in input with the same value end up in the same order as when they began.

\section*{Sorting Model}
- Recall our basic assumption: we can only compare two elements at a time
- we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
- Assume no duplicates
- How many possible orderings can you get?
- Example: a, b, c ( \(\mathrm{N}=3\) )

\section*{Permutations}
- How many possible orderings can you get?
- Example: a, b, c ( \(\mathrm{N}=3\) )
- (abc), (acb), (bac), (bca), (c ab), (c ba)
-6 orderings \(=3 \cdot 2 \cdot 1=3\) ! (ie, " 3 factorial")
- All the possible permutations of a set of 3 elements
- For N elements
- N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
\(-\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots(2)(1)=\mathrm{N}\) ! possible orderings
2/24/2010
42


\section*{Student Activity}

\section*{Lower bound on Height}
- A binary tree of height \(h\) has at most how many leaves?

L \(\square\)
- A binary tree with \(L\) leaves has height at least:
h \(\square\)

- The decision tree has how many leaves: \(\square\)
- So the decision tree has height:
h
\(\square\)
\(\square\)

\section*{\(\Omega(\mathrm{N} \log \mathrm{N})\)}
- Run time of any comparison-based sorting algorithm is \(\boldsymbol{\Omega}(\mathbf{N} \log \mathbf{N})\)
- Can we do better if we don't use comparisons?

\section*{BucketSort (aka BinSort)}

If all values to be sorted are known to be between 1 and \(K\), create an array count of size \(K\), increment counts while traversing the input, and finally output the result.

Example \(K=5\). Input \(=(5,1,3,4,3,2,1,1,5,4,5)\)



Running time to sort n items?
\(\qquad\)

\section*{BucketSort Complexity: \(\mathrm{O}(n+K)\)}
- Case 1: \(K\) is a constant
- BinSort is linear time
- Case 2: \(K\) is variable
- Not simply linear time
- Case 3: \(K\) is constant but large (e.g. \(2^{32}\) ) - ???

Radix Sort Example ( \(1^{\text {st }}\) pass)

\begin{tabular}{|l} 
This example uses \(\mathrm{B}=10\) and base 10 \\
digits for simplicity of demonstration. \\
Larger bucket counts should be used
\end{tabular}
2/24/2010 Larger bucket counts should
in an actual implementation. 50

\section*{Fixing impracticality: RadixSort}
- Radix = "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit, least significant to most significant (lsd to msd)


\section*{Radixsort: Complexity}
- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
- RadixSort only good for large number of elements with relatively small values
\({ }^{2 / 24 / 2010}{ }^{\circ} \mathrm{Hard}\) on the cache compared to MergeSort/QuickSort \({ }^{54}\)

\section*{Internal versus External Sorting}
- Need sorting algorithms that minimize disk/tape access time
- External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples```

