

Today's Outline

- Announcements
- Project 3 partner selection due Mon Feb 22 by

11 pm , DO NOT WAIT UNTIL THEN TO START!

- Written Homework \#6 due Friday 2/26
- Today's Topics:
- Disjoint Sets
- Sorting

Weighted Union/Union by Size

- Weighted Union
- Always point the smaller (total \# of nodes) tree to the root of the larger tree

Example Again

Analysis of Weighted Union

With weighted union an up-tree of height h has weight at least 2^{h}.

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by weighted union. Let h be its height.

$$
\begin{aligned}
\mathrm{n} & \geq 2^{\mathrm{h}} \\
\log _{2} \mathrm{n} & \geq \mathrm{h}
\end{aligned}
$$

- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Weighted Union

W-Union(i,j : index) \{
//i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then up[i] := j; weight[j] := wi + wj; new runtime for Union():
else up[j] :=i; weight[i] := wi +wj;
\}
runtime for m finds and $n-1$ unions $=$
2/22/2010
new runtime for Find ():

10

Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for the root, simply store-size
[Read section 8.4, page 276]

How about Union-by-height?

- Can still guarantee $\mathrm{O}(\log n)$ worst case depth

Left as an exercise!

- Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] # -1 do //find root//
        r := up[r];
    if i}\not=r\mathrm{ then //compress path//
        k := up[i];
        while k f r do
            up[i] := r;
            i := k;
            k := up [k]
        return(r)
}
```


Interlude: A Really Slow Function

Path Compression: Code

```
int Find(Object x) {
    // x had better be in
    // the set!
    int xID = hTable[x];
    int i = xID;
    // Get the root for
    // this set
    while(up[xID] != -1)
    {
        xID = up[xID];
    (New?) runtime for Find:

Student Activity

\section*{Draw the result of Find(e):}


Ackermann's function is a really big function \(\mathrm{A}(x, y)\) with inverse \(\alpha(x, y)\) which is really small

How fast does \(\alpha(x, y)\) grow?
\(\alpha(x, y)=4\) for \(x\) far larger than the number of atoms in the universe \(\left(2^{300}\right)\)
\(\alpha\) shows up in:
- Computation Geometry (surface complexity)
- Combinatorics of sequences

\section*{A More Comprehensible Slow Function}
\(\log ^{*} x=\) number of times you need to compute \(\log\) to bring value down to at most 1
E.g. \(\log ^{*} 2=1\)
\(\log * 4=\log * 2^{2}=2\)
\(\log ^{*} 16=\log ^{*} 2^{2^{2}}=3 \quad(\log \log \log 16=1)\)
\(\log * 65536=\log * 2^{2^{2}}=4 \quad(\log \log \log \log 65536=1)\)
\(\log * 2^{65536}=\ldots \ldots \ldots \ldots .=5\)

Take this: \(\alpha(m, n)\) grows even slower than \(\log ^{*} n!!\) 2/22/2010

\section*{Complex Complexity of Union-by-Size + Path Compression}

Tarjan proved that, with these optimizations, \(p\) union and find operations on a set of \(n\) elements have worst case complexity of \(\mathrm{O}(p \cdot \alpha(p, n))\)

For all practical purposes this is amortized constant time: \(\mathrm{O}(p \cdot 4)\) for \(p\) operations!
- Very complex analysis - worse than splay tree analysis etc. that we skipped!
2/22/2010

\section*{Disjoint Union / Find} with Weighted Union and PC
- Worst case time complexity for a W-Union is \(\mathrm{O}(1)\) and for a PC-Find is \(\mathrm{O}(\log n)\).
- Time complexity for \(m \geq n\) operations on \(n\) elements is \(\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)\) where \(\log ^{*} \mathrm{n}\) is a very slow growing function.
- Log * \(\mathrm{n}<7\) for all reasonable n . Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

2/22/2010

\section*{Amortized Complexity}
- For disjoint union / find with weighted union and path compression.
- average time per operation is essentially a constant.
- worst case time for a PC-Find is \(\mathrm{O}(\log n)\).
- An individual operation can be costly, but over time the average cost per operation is not.```

