
2/22/2010 1

Disjoint Sets II
Chapter 8 in Weiss

CSE 326
Data Structures
Ruth Anderson

2/22/2010 2

Today’s Outline

• Announcements
– Project 3 partner selection due Mon Feb 22 by

11pm, DO NOT WAIT UNTIL THEN TO START!
– Written Homework #6 due Friday 2/26

• Today’s Topics:
– Disjoint Sets
– Sorting

2/22/2010 33

Weighted Union/Union by Size
• Weighted Union

– Always point the smaller (total # of nodes) tree
to the root of the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

2/22/2010 44

Example Again

1 2 3 n

1

2 3 n

W-Union(2,1)

1

2

3

n

W-Union(3,2)

W-Union(n,2)

…

… :
:

1

2

3 n

…

Find(1) constant time
…

2/22/2010 55

Analysis of Weighted Union

With weighted union an up-tree of height h has
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1

– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

2/22/2010 66

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

n > 2h

log2 n > h

• Find(x) in tree T takes O(log n) time.
– Can we do better?

2/22/2010 77

Worst Case for Weighted Union
n/2 Weighted Unions

n/4 Weighted Unions

2/22/2010 88

Example of Worst Cast (cont’)
After n/2 + n/4 + …+ 1 Weighted Unions:

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n

2/22/2010 99

Array Implementation

1

2

3

45

6

7
2 41

-1
2

1 -1
1

7 7 5 -1
4

1 2 3 4 5 6 7
up

weight

2/22/2010 1010

Weighted Union
W-Union(i,j : index){
//i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then
up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

}

new runtime for Union():

new runtime for Find():
runtime for m finds and n-1 unions =

2/22/2010 1111

Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,
simply store –size

[Read section 8.4, page 276]

2/22/2010 1212

How about Union-by-height?

• Can still guarantee O(logn) worst case
depth

Left as an exercise!

• Problem: Union-by-height doesn’t combine very
well with the new find optimization technique
we’ll see next

2/22/2010 1313

Path Compression
• On a Find operation point all the nodes on the

search path directly to the root.

1

2

3

45

6

7

PC-Find(3)

8 9

10

2/22/2010 1515

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

2/22/2010 1616

Self-Adjustment Works

PC-Find(x)

x

2/22/2010 1717

Path Compression Find

PC-Find(i : index) {
r := i;
while up[r] ≠ -1 do //find root//

r := up[r];
if i ≠ r then //compress path//

k := up[i];
while k ≠ r do

up[i] := r;
i := k;
k := up[k]

return(r)
}

2/22/2010 1818

Path Compression: Code

int Find(Object x) {

// x had better be in

// the set!

int xID = hTable[x];

int i = xID;

// Get the root for

// this set

while(up[xID] != -1)
{

xID = up[xID];

}

// Change the parent for

// all nodes along the path

while(up[i] != -1) {

temp = up[i];

up[i] = xID;

i = temp;

}

return xID;

}

(New?) runtime for Find:

2/22/2010 1919

Interlude: A Really Slow Function
Ackermann’s function is a reallybig function A(x, y)

with inverse α(x, y) which is reallysmall

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of atoms
in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

2/22/2010 2020

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3 (log log log 16 = 1)
log* 65536 = log* 2222 = 4 (log log log log 65536 = 1)
log* 265536= …………… = 5

Take this: α(m,n) grows even slower than log* n !!
2/22/2010 2121

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and
find operations on a set of n elements have worst case
complexity of O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:

O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis
etc. that we skipped!

2/22/2010 2222

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is O(1)
and for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n
elements is O(m log* n) where log* n is a very
slow growing function.
– Log * n < 7 for all reasonable n. Essentially constant

time per operation!

• Using “ranked union” gives an even better bound
theoretically.

2/22/2010 2323

Amortized Complexity

• For disjoint union / find with weighted
union and path compression.
– average time per operation is essentially a

constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but
over time the average cost per operation is
not.

