

Motivation

Some kinds of data analysis require keeping track of transitive relations.
Equivalence relations are one family of transitive relations.
Grouping pixels of an image into colored regions is one form of data analysis that uses "dynamic equivalence relations".
Creating mazes without cycles is another application.
Later we'll learn about "minimum spanning trees" for networks, and how the dynamic equivalence relations help out in computing spanning trees. 2/172010

Today's Outline

- Announcements
- Project 3 partner selection due Mon Feb 22 by

11 pm , DO NOT WAIT UNTIL THEN TO START!

- Written Homework \#5 due Friday 2/19
- Today's Topics:
- Hash Tables
- Disjoint Sets

Disjoint Sets

- Two sets S_{1} and S_{2} are disjoint if and only if they have no elements in common.
(the intersection of the two sets is the empty set)
- S_{1} and S_{2} are disjoint iff $S_{1} \cap S_{2}=\varnothing$

For example $\{a, b, c\}$ and $\{d, e\}$ are disjoint.

But $\{x, y, z\}$ and $\{t, u, x\}$ are not disjoint.
2/17/2010

Induced Equivalence Relations

- Let S be a set, and let P be a partition of S.
$P=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$
P being a partition of S means that:
$\mathrm{i} \neq \mathrm{j} \rightarrow \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ and
$S_{1} \cup S_{2} \cup \ldots \cup S_{k}=S$
- P induces an equivalence relation R on S :
$\mathrm{R}(\mathrm{a}, \mathrm{b})$ provided a and b are in the same subset (same element of P).
So given any partition P of a set S , there is a corresponding equivalence relation R on S.
2/17/2010

Example

- Maintain a set of pairwise disjoint* sets. $-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name: one of its members
$-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{\underline{9}\},\{\underline{1}, 6\}$
*Pairwise Disjoint: For any two sets you pick, their intersection will be empty)

Find

- Find(x) - return the name of the set containing x .
$-\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{\underline{9}\}$,
$-\operatorname{Find}(1)=5$
$-\operatorname{Find}(4)=8$

Introducing the UNION-FIND ADT

- Also known as the Disjoint Sets ADT or the Dynamic Equivalence ADT.
- There will be a set S of elements that does not change.
- We will start with a partition P_{0}, but we will modify it over time by combining sets.
- The combining operation is called "UNION"
- Determining which set (of the current partition) an element of S belongs to is called the "FIND" operation.

Union

- Union (x, y) - take the union of two sets named x and y
$-\{3, \underline{5}, 7\},\{4,2,8\},\{\underline{9}\},\{\underline{1}, 6\}$
- Union(5,1) $\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,

To perform the union operation, we replace sets x and y by $(x \cup y)$

Application: Building Mazes

- Build a random maze by erasing edges.

Building Mazes (2)

- Pick Start and End

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- Only one path from any one cell to another (There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.)

A Good Solution

A Hidden Tree

Number the Cells

We have disjoint sets $P=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$ each cell is unto itself. We have all possible edges $E=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ edges total.

Start | 1 | 2 | 3 | 4 | 5 | 6 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 8 | 9 | 10 | 11 | 12 | |
| 13 | 14 | 15 | 16 | 17 | 18 | |
| 19 | 20 | 21 | 22 | 23 | 24 | |
| 25 | 26 | 27 | 28 | 29 | 30 | |
| 31 | 32 | 33 | 34 | 35 | 36 | End |

2172010 19

Algorithm - idea

1. Choose wall at random.

\rightarrow Boundary walls are not in wall list,

 because we cannot delete them2. Erase wall if the neighbors are in disjoint sets.
```
Avoids cycles
```

3. Take union of those sets.
4. Repeat until there is only one set.
\rightarrow Every cell reachable from every other cell.

We want to check if two nodes x and y are in the same set.
How can I do this using unions and finds?
\qquad ${ }^{2}$

Basic Algorithm

- $P=$ set of sets of connected cells
- $\mathrm{E}=$ set of edges
- Maze $=$ set of maze edges (initially empty)

```
While there is more than one set in P {
    pick a random edge (x,y) and remove from E
    u := Find(x);
    v:= Find(y);
    if u\not=v then // removing edge ( }\textrm{x},\textrm{y}\mathrm{ ) connects previously non-
    // connected cells x and y - leave this edge removed!
        Union(u,v)
        else // cells x and y were already connected, add this
            // edge to set of edges that will make up final maze.
        add (x,y) to Maze
    }
    All remaining members of E together with Maze form the maze
```


Implementing the DS ADT

- n elements,

Total Cost of: m finds, $\leq n-1$ unions can there be more unions?

- Target complexity: $O(m+n)$

$$
\text { i.e. } O(1) \text { amortized }
$$

- $O(1)$ worst-case for find as well as union would be great, but...
Known result: both find and union cannot be done in worst-case $O(1)$ time

Up-Tree for Disjoint Union/Find

Data Structure for the DS ADT

Find Operation

Find (x) - follow x to the root and return the root

Find Solutions

```
    Recursive
    Find(up[] : integer array, x : integer) : integer {
    //precondition: x is in the range 1 to size//
        if up[x] = 0 then return }
        else return Find(up,up[x]);
    }
    Iterative
    Find(up[] : integer array, x : integer) : integer {
    //precondition: x is in the range 1 to size//
        while up[x] # 0 do
        while up[x] f =
        return x;
    }
2/17/2010
```

36

