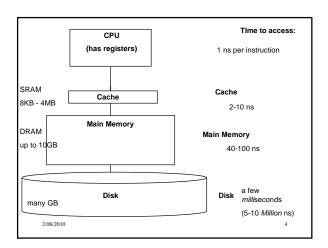
B-Trees

Section 4.7 in Weiss

CSE 326 Data Structures Ruth Anderson

2/08/2010

Today's Outline


- · Announcements
 - Project 2B due Wednesday, 2/10 at 11pm
 - Midterms returned and discussed in section Thurs
 - Written Homework #4 due Friday 2/12
- · Today's Topics:
 - B-Trees

2/08/2010

Trees so far

- BST
- AVL
- Splay

2/08/2010

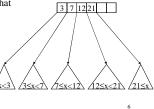
M-ary Search Tree

- Maximum branching factor of M
- Complete tree has height =

disk accesses for find:

Runtime of *find*:

2/08/2010

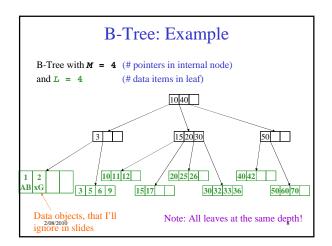

Solution: B-Trees

- specialized M-ary search trees
- Each **node** has (up to) M-1 keys:
 - subtree between two keys x and y contains leaves with *values* y such that

 Pick branching factor M such that each node takes one full {page, block}

of memory

 $x \le v < y$

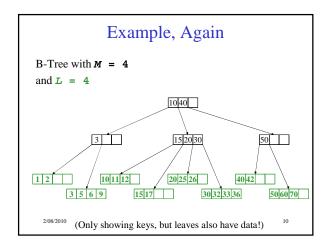


B-Trees

What makes them disk-friendly?

1. Many keys stored in a node

- All brought to memory/cache in one access!
- 2. Internal nodes contain *only* keys;
 Only leaf nodes contain keys and actual *data*
 - The tree structure can be loaded into memory irrespective of data object size
 - · Data actually resides in disk
 - Only retrieve data that we need
 2/08/2010

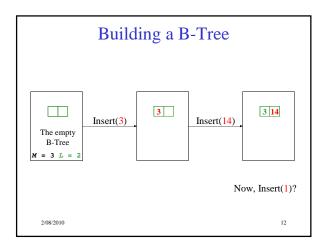


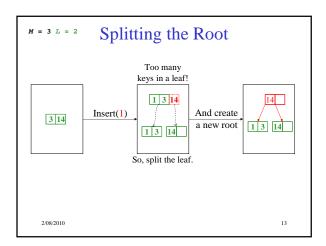
B-Tree Properties ‡

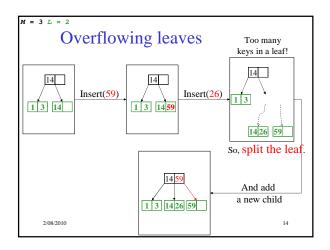
- Data is stored at the leaves
- All leaves are at the same depth and contains between $\lceil L/2 \rceil$ and L data items
- Internal nodes store up to M-1 keys
- Internal nodes have between $\lceil M/2 \rceil$ and M children
- Root (special case) has between 2 and M children (or root could be a leaf)

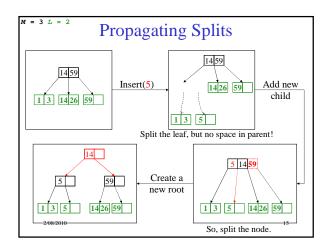
2/08/2010

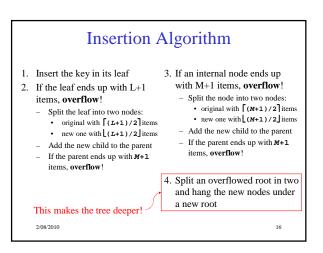
[‡]These are technically B⁺-Trees

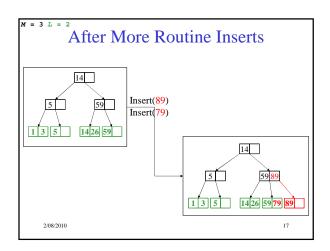

B-trees vs. AVL trees

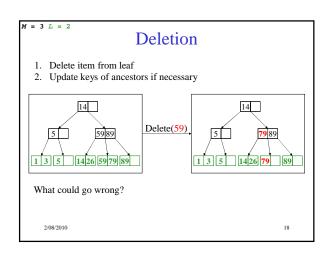

Suppose we have 100 million items (100,000,000):

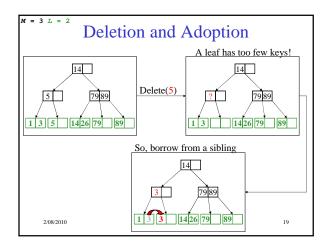

- Depth of AVL Tree
- Depth of B+ Tree with M = 128, L = 64

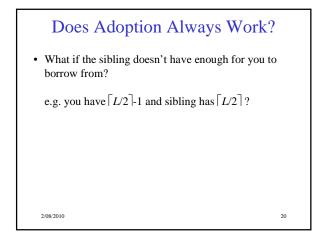

2/08/2010

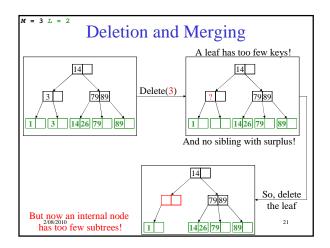

11

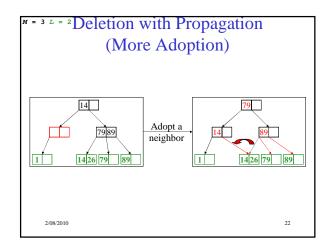


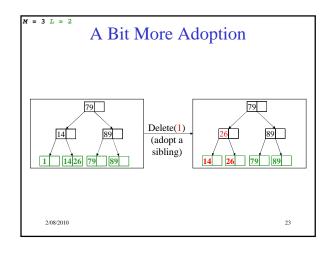


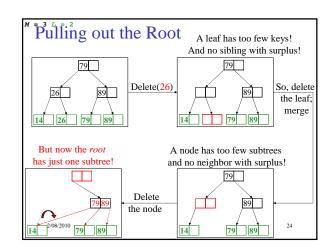














Deletion Algorithm

- 1. Remove the key from its leaf
- 2. If the leaf ends up with fewer than [L/2] items, underflow!
 - Adopt data from a sibling; update the parent
 - If adopting won't work, delete node and merge with neighbor
 - If the parent ends up with fewer than [M/2] items,

underflow!

26

Deletion Slide Two

- 3. If an internal node ends up with fewer than [M/2] items, underflow!
 - Adopt from a neighbor; update the parent
 - If adoption won't work, merge with neighbor
 - If the parent ends up with fewer than [M/2] items, underflow!

4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if **M** and **L** are large (Why?)
- If $\mathbf{M} = \mathbf{L} = 128$, then a B-Tree of height 4 will store at least 30,000,000 items

2/08/2010 28

Tree Names You Might Encounter

FYI:

- B-Trees with M = 3, L = x are called 2-3 trees
 - · Nodes can have 2 or 3 keys
- B-Trees with M = 4, L = x are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 keys

2/08/2010

Determining M and L for a B-Tree

1 Page on disk = 1 KByte

Key = 8 bytes, Pointer = 4 bytes

Data = 256 bytes per record (includes key)

M =

L=

Student Activity

30