Trees

(AVL Trees)
 Chapter 4 in Weiss

CSE 326

Data Structures
Ruth Anderson

Today's Outline

- Announcements
- Written HW \#3 due Friday, 1/29
- Project 2A due Monday, 2/1
- Today's Topics:
- Dictionary ADT
- Binary Search Trees
- AVL Trees

Delete 10 - replace w. smallest in right subtree

The AVL Balance Condition

Left and right subtrees of every node have equal heights differing by at most 1

Define: balance $(x)=\operatorname{height}(x$. left $)-\operatorname{height}(x$. right $)$
AVL property: $\mathbf{- 1} \leq \operatorname{balance}(x) \leq 1$, for every node x

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\mathrm{O}\left(2^{h}\right)$) nodes
- Easy to maintain
- Using single and double rotations

The AVL Tree Data Structure

Structural properties

1. Binary tree property (0,1 , or 2 children)
2. Heights of left and right subtrees of every node differ by at most 1
Result:
Worst case depth of any node is: $\mathrm{O}(\log n)$

Ordering property

Is this an AVL Tree?

NULLs have
height -1

Circle One:

AVL

Not AVL

AVL

Not AVL

Proving Shallowness Bound

Let $\mathbf{S}(h)$ be the min \# of nodes in an AVL tree of height h

Claim: $\mathbf{S}(h)=\mathbf{S}(h-1)+\mathbf{S}(h-2)+1$
Solution of recurrence: $\mathbf{S}(h)=O\left(2^{h}\right)$ (like Fibonacci numbers)

AVL tree of height $h=4$ with the min \# of nodes (12)

An AVL Tree

AVL trees: find, insert

- AVL find:
- same as BST find.
- AVL insert:
- same as BST insert, except may need to "fix" the AVL tree after inserting new value.

AVL tree insert

Let x be the node where an imbalance occurs.
x is NOT the node we inserted
Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases $1 \& 4$ are solved by a single rotation. Cases $2 \& 3$ are solved by a double rotation.

Bad Case \#1

Insert(6)
Insert(3)
Insert(1)

Fix: Apply Single Rotation

AVL Property violated at this node (x)

Single Rotation:

1. Rotate between x and child

Height of tree before? Height of tree after? Effect on Ancestors?

Single rotation example

Soln:

Bad Case \#3

Insert(1)
Insert(6)
Insert(3)

Fix: Apply Double Rotation

AVL Property violated at this node (x)

Double Rotation

1. Rotate between x's child and grandchild

1/27/2010 2. Rotate between x and x 's new child

Double rotation in general

$$
\mathbf{W}<\mathbf{b}<\mathbf{X}<\mathbf{c}<\mathbf{Y}<\mathbf{a}<\mathbf{Z}
$$

1/27/2010
Height of tree before? Height of tree after? Effect on Ancestors?

Double rotation, step 1

Double rotation, step 2

0 ©

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x 's child and grandchild
2. Rotate between x and x 's new child

Insert into an AVL tree: a bec d

Circle your final answer

Single and Double Rotations:

Inserting what values from $\{1,4,6,8,10$, $12,14\}$ would cause the tree to need a:

1. single rotation?
2. double rotation?

3. no rotation?

Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:
case \#1: Perform single rotation and exit
case \#2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.

Easy Insert

Insert(3)

Unbalanced?

Hard Insert

Insert(33)

Unbalanced?
How to fix?

Single Rotation

1/27/2010

Hard Insert

Insert(18)
Unbalanced?

How to fix?

Single Rotation (oops!)

Double Rotation (Step \#1)

Double Rotation (Step \#2)

AVL Trees Revisited

- Balance condition:

For every node $x, \quad-1 \leq$ balance $(x) \leq 1$

- Strong enough : Worst case depth is $\mathrm{O}(\log n)$
- Easy to maintain : one single or double rotation
- Guaranteed $\mathrm{O}(\log n)$ running time for
- Find?
- Insert?
- Delete?
- buildTree?

AVL Trees Revisited

- What extra info did we maintain in each node?
- Where were rotations performed?
- How did we locate this node?

