Trees

(Binary Search Trees) Chapter 4 in Weiss

CSE 326 Data Structures Ruth Anderson

1/25/2010

Today's Outline

- · Announcements
 - Written HW #3 due next Friday, 1/29
 - Project 2A due next Monday, 2/1
- · Today's Topics:
 - Priority Queues
 Binomial Queues

 - Dictionary ADT
 - · Binary Search Trees

1/25/2010

The Dictionary ADT: A Modest Few Uses

Associates a key with a value Main operations: Find, Insert, Delete

Examples:

• Networks : Router tables · Operating systems : Page tables • Compilers : Symbol tables

Probably the most widely used ADT!

1/25/2010

Tree Calculations Recall: height is max number of edges from root to a leaf Find the height of the tree... runtime: 1/25/2010

• Post-order: Left subtree, right subtree, root

Traversals

void traverse(BNode t){
 if (t != NULL)
 traverse (t.left);
 print t.element;
 traverse (t.right);
 }
}
Which one is this?

Binary Tree: Some Numbers! For binary tree of height *h*: - max # of leaves: - max # of nodes: - min # of leaves: - min # of nodes:

The Dictionary ADT: A Modest Few Uses

Associates a key with a value Main operations: Find, Insert, Delete

Examples:

1/25/2010

 Networks : Router tables · Operating systems : Page tables • Compilers : Symbol tables

Probably the most widely used ADT!

15

1/25/2010

Implementations

insert delete

<u>®</u>

- · Unsorted Linked-list
- · Unsorted array
- · Sorted array

1/25/2010

Binary Search Tree Data Structure

- · Structural property
 - each node has ≤ 2 children
 - result:
 - · storage is small
 - · operations are simple
 - average depth is small
- · Order property
 - all keys in left subtree smaller than root's key
 - all keys in right subtree larger
- result: easy to find any given key
- What must I know about what I store?

BuildTree for BST • Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into an initially empty BST. Runtime depends on the order! – in given order – median first, then left median, right median, etc.

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

- + simpler
- + physical deletions done in batches
- + some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to be modified (e.g., min and max) 1/25/2010

Non-lazy Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- · Three cases:
 - node has no children (leaf node)
 - node has one child
 - node has two children

1/25/2010

$Non-lazy\ Deletion-The\ Leaf\ Case$

1/25/2010

Deletion – The One Child Case

1/25/2010

Deletion – The Two Child Case

What can we replace 5 with?

1/25/2010

20

Deletion – The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case - easy!

5/2010 30

Finally...

Original node containing 7 gets deleted

1/25/2010

31

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with *n* nodes
 - Average height is O(log n)
 - Worst case height is O(n)
- Simple cases such as insert(1, 2, 3, ..., n)lead to the worst case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is $O(\log n)$ - strong enough!
- 2. is easy to maintain

- not too strong!

32

Potential Balance Conditions

- 1. Left and right subtrees of the root have equal number of nodes
- 2. Left and right subtrees of the root have equal height

1/25/2010

Potential Balance Conditions

- 3. Left and right subtrees of every node have equal number of nodes
- 4. Left and right subtrees of every node have equal height

1/25/2010

The AVL Balance Condition

Left and right subtrees of every node have equal heights differing by at most 1

Define: **balance**(x) = height(x.left) – height(x.right)

AVL property: $-1 \le balance(x) \le 1$, for every node x

- · Ensures small depth
 - Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $O(2^h)$) nodes
- Easy to maintain
 - Using single and double rotations

35

The AVL Tree Data Structure

Structural properties

- 1. Binary tree property
- 2. Balance property: balance of every node is between -1 and 1

Result:

Worst case depth is $O(\log n)$

Ordering property

- Same as for BST

1/25/2010

