

Today's Outline

ADTs Seen So Far

The Dictionary ADT: A Modest Few Uses

Associates a key with a value
Main operations: Find, Insert, Delete

Examples:
$\begin{array}{ll}\text { - Networks } & : \text { Router tables } \\ \text { - Operating systems } & \text { : Page tables } \\ \text { - Compilers } & \text { : Symbol tables }\end{array}$

Probably the most widely used ADT:
1/25/2010
5

Traversals

```
void traverse (BNode t) {
    if (t != NULL)
            traverse (t.left);
            print t.element;
            traverse (t.right);
        }
    }
    Which one is this?
```

 1/25/2010
 9

More Recursive Tree Calculations:

Tree Traversals

Three types:

- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root
- Binary tree is
- a root
- left subtree (maybe empty)
- right subtree (maybe empty)
- Representation:

Data		
left pointer	right pointer	

(D)
(E) ${ }^{\text {E }}$

1/25/2010
10

Binary Tree: Special Cases

Perfect Tree

(i) (i)

Full Tree

Binary Tree: Some Numbers!
For binary tree of height h :
- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:
125s2010

The Dictionary ADT

- Data:

The Dictionary ADT: A Modest Few Uses

Associates a key with a value
Main operations: Find, Insert, Delete

Examples:
$\begin{array}{ll}\text { - Networks } & \text { : Router tables } \\ \text { - Operating systems } & \text { : Page tables } \\ \text { - Compilers } & \text { : Symbol tables } \\ \quad \text { Probably the most widely used ADT! } \\ \text { 1/25/2010 }\end{array}$

Find in BST, Iterative

BuildTree for BST

- Suppose keys 1, 2, 3, 4, 5, 6, 7, 8,9 are inserted into an initially empty BST.

Runtime depends on the order!

- in given order
- in reverse order
- median first, then left median, right median, etc.

1/25/2010

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

Deletion in BST

Why might deletion be harder than insertion?

Non-lazy Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children

Deletion - The One Child Case

Delete(15)

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees!

Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case - easy!

1/25/2010
30

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

1/25/2010 33

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
- Average height is $\mathrm{O}(\log n)$
- Worst case height is $\mathrm{O}(n)$
- Simple cases such as insert($1,2,3, \ldots, \mathrm{n})$ lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\mathrm{O}(\log n) \quad-$ strong enough!
2. is easy to maintain - not too strong!

1/25/2010

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height

The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between -1 and 1

Result:
Worst case depth is $\mathrm{O}(\log n)$

Ordering property

- Same as for BST

1/25/2010
1/25/2010

36

