

Today's Outline

- Announcements
- Written HW \#2 due NOW
- Project 2A due next Friday, 1/29
- Written HW \#3 due next Monday, 2/1
- Today's Topics:
- Priority Queues
- Skew Heaps
- Binomial Queues

Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height

> What's a forest?
> What's a binomial tree?

- Order property
- Each binomial tree has the heap-order property

1/22/2010
The Binomial Tree, B_{h}

- Height h
- Exactly 2^{h} nodes
- B_{h} is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children

Binomial Queues

- Structural property
- Forest of binomial trees
- At most one tree of any height
- Order property
- Each binomial tree has the heap-order property

Binomial Queue with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!
Every binomial Q with n elements has this structure
Write n in binary: $\quad n=1101_{(\text {base 2) }}=13_{\text {(base 10) }}$

Operations on Binomial Queue

- Will again define merge as the base operation - insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

1/22/2010
11

Properties of Binomial Queue

- At most one binomial tree of any height
- n nodes \Rightarrow binary representation is of size ?
\Rightarrow deepest tree has height ?
\Rightarrow number of trees is ?

Define: height(forest F) $=\max _{\text {tree }}^{\mathrm{T} \text { in } \mathrm{F}}\{$ height(T) $\}$

Binomial Q with \boldsymbol{n} nodes has height $\Theta(\log n)$

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight $\{$
a. $\quad m \leftarrow$ total number of B_{k} 's in the two BQs
\# of 1's
b. if $\mathrm{m}=0$: continue; \qquad $0+0=0$
c. if $m=1: \quad$ continue; $\quad \square \quad \square$
d. if $m=2$: combine the two B_{k} 's to form a $\mathrm{B}_{k+1} \quad 1+1=0+\mathrm{c}$
e. if $m=3$: retain one B_{k} and $\quad 1+1+c=1+c$
$\}$
Claim: When this process ends, the forest
1/22/2010 has at most one tree of any height
12

Example: Binomial Queue Merge

H1:
H2:

1/22/2010
Example: Binomial Queue Merge
H1:
H2:

1/22/2010

Complexity of Merge

Insert in a Binomial Queue

Insert (x) : Similar to leftist or skew heap
runtime
Worst case complexity: same as merge
Number of trees is:
\Rightarrow worst case running time $=\Theta(\quad)$

