Priority Queues

(Binomial Queues) Chapter 6 in Weiss

CSE 326 Data Structures Ruth Anderson

1/22/2010

Today's Outline

- Announcements
 - Written HW #2 due NOW
 - Project 2A due next Friday, 1/29
 - Written HW #3 due next Monday, 2/1
- Today's Topics:
 - Priority Queues
 - Skew Heaps
 - · Binomial Queues

1/22/2010

Yet Another Data Structure: Binomial Queues

- · Structural property
 - Forest of binomial <u>trees</u> with at most one tree of any height

What's a forest?

What's a binomial tree?

- · Order property
 - Each binomial tree has the heap-order property

1/22/2010

The Binomial $\underline{\text{Tree}}$, B_h

- Height h
- Exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children

The Binomial $\underline{\text{Tree}}$, B_h

- Number of nodes at depth d is binomial coeff.
 - Hence the name; we will *not* use this last property
- Every subtree of a binomial tree is a binomial tree

Binomial Queues

- · Structural property
 - Forest of binomial trees
 - At most one tree of any height
- · Order property
 - Each binomial tree has the heap-order property

1/22/2010

8

Binomial Queue with *n* elements

Binomial Q with *n* elements has a *unique* structural representation in terms of binomial trees!

Every binomial Q with n elements has this structure

Properties of Binomial Queue

- At most one binomial tree of any height
- n nodes ⇒ binary representation is of size ?
 ⇒ deepest tree has height ?
 - \Rightarrow number of trees is ?

 $Define: height(forest F) = max_{tree T in F} \{ height(T) \}$

Binomial Q with n nodes has height $\Theta(\log n)$

2/2010 10

Operations on Binomial Queue

- Will again define *merge* as the base operation
 insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

1/22/2010

Merging Two Binomial Queues

Essentially like adding two binary numbers!

- 1. Combine the two forests
- 2. For *k* from 1 to maxheight {

```
a. m \leftarrow \text{total number of } \mathbf{B}_k's in the two BQs

b. if m=0: continue;

c. if m=1: continue;

d. if m=2: combine the two \mathbf{B}_k's to form a \mathbf{B}_{k+1}

e. if m=3: retain one \mathbf{B}_k and combine the other two to form a \mathbf{B}_{k+1}
```

Claim: When this process ends, the forest has at most one tree of any height

12

Example: Binomial Queue Merge

Example: Binomial Queue Merge

1/22/2010

Complexity of Merge Constant time for each tree Max height is: Number of trees is: \Rightarrow worst case running time = $\Theta($

