
1

Math Review

CSE 326
Data Structures & Algorithms

Ruth Anderson
Winter 2010

01/06/10 2

Today’s Outline
• Announcements

– Project #1 due Wed, Jan 13 at 11pm, come to section tomorrow
with questions.

– Two emails sent to cse326 mailing list – did you get them?
– Have you installed Eclipse (or whatever environment you will be

using this quarter) and Java yet?
– Please fill out survey and bring Info sheet to class on Friday.

• Queues and Stacks
• Math Review

– Proof by Induction
– Powers of 2
– Binary numbers
– Exponents and Logs

01/06/10 3

Project 1 – Sound Blaster!
Play your favorite song in reverse!

Aim:

1. Implement stack ADT two different ways

2. Use to reverse a sound file

Due: Wed, Jan 13, at 11pm via Catalyst

01/06/10 4

Mathematical Induction

Suppose we wish to prove that:

For all n ≥ n0, some predicate P(n) is true.

We can do this by proving two things:

1. P(n0) --- this is called the “basis.”

2. If P(k) then P(k+1) -- this is called the
“induction step.”

01/06/10 5

Example: Basis Step
Prove for all n ≥ 1, sum of first n powers of 2 = 2n – 1

20 + 21 + 22 + … + 2n-1 = 2n - 1.

in other words: 1 + 2 + 4 + … + 2n-1 = 2n - 1.

Proof by induction:
Basis with n0 = 1:

(left hand side)

(right hand side)

So true for n0 = 1
01/06/10 6

Example: Basis Step
Prove for all n ≥ 1, sum of first n powers of 2 = 2n – 1

20 + 21 + 22 + … + 2n-1 = 2n - 1.

in other words: 1 + 2 + 4 + … + 2n-1 = 2n - 1.

Proof by induction:
Basis with n0 = 1:

(left hand side) 21-1 = 20 = 1
(right hand side) 21 – 1 = 2 – 1 = 1

So true for n0 = 1

2

01/06/10 7

Example: Inductive Step
• Induction hypothesis: (Assume this is true)

1 + 2 + 4 + … + 2k-1 = 2k – 1

• Induction step:

1 + 2 + 4 + … 2k-1 = 2k– 1

Prove for all n ≥ 1, sum of first n powers of 2 = 2n – 1

01/06/10 8

Example: Inductive Step
• Induction hypothesis: (Assume this is true)

1 + 2 + 4 + … + 2k-1 = 2k – 1
• Induction step: Now add 2k to both sides:

1 + 2 + 4 + … 2k-1 + 2k = 2k– 1 + 2k

= 2(2k) – 1
= 2k+1 – 1

Therefore if the equation is valid for n = k, it must also
be valid for n = k+1.

• Summary: It is valid for n=1 (basis) and by the induction
step it is therefore valid for n=2, n=3, …
It is valid for all integers greater than 0.

Prove for all n ≥ 1, sum of first n powers of 2 = 2n – 1

01/06/10 9

Powers of 2

• Many of the numbers we use in Computer Science are
powers of 2

• Binary numbers (base 2) are easily represented in digital
computers
– each "bit" is a 0 or a 1

– an n-bit wide field can represent how many different things?

0000000000101011

01/06/10 10

N bits can represent how many things?

Bits Patterns # of patterns

1

2

01/06/10 11

Unsigned binary numbers
• For unsigned numbers in a fixed width field

– the minimum value is 0

– the maximum value is _________, where n is the
number of bits in the field

– The value is

• Each bit position represents a power of 2 with
ai = 0 or ai = 1

in

i ia 2
1

0∑
−

=

01/06/10 12

Unsigned binary numbers
• For unsigned numbers in a fixed width field

– the minimum value is 0

– the maximum value is 2n-1 where n is the number of
bits in the field

– The value is

• Each bit position represents a power of 2 with
ai = 0 or ai = 1

in

i ia 2
1

0∑
−

=

3

01/06/10 13

Signed Numbers?

01/06/10 14

Logarithms and Exponents

• Definition: log2 x = y if and only if x = 2y

8 = 23, so log28 = 3

65536= 216, so log265536 = 16

• Notice that log2n tells you how many bits are needed
to distinguish among n different values.
8 bits can hold any of 256 numbers, for example: 0 to 28-1,

which is 0 to 255

log2256 = 8

01/06/10 15

x, 2x and log2x

x = 0:.1:4
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

x

y

One function that grows very quickly, One that grows very slowly

01/06/10 16

2x and log2x

x = 0:10
y = 2.^x
plot(x,y,'r')
hold on
plot(y,x,'g')
plot(y,y,'b')

x

y

One function that grows very quickly, One that grows very slowly

01/06/10 17

What is the minimum height of a
binary tree with N nodes?

01/06/10 18

Floor and Ceiling

 X

 X

Floor function: the largest integer < X

Ceiling function: the smallest integer > X

      2232.722.7 =−=−=

      2222.332.3 =−=−=

4

01/06/10 19

Facts about Floor and Ceiling

 
 

    integer an is n ifnn/2n/23.

1XXX2.

XX1X1.

=+
+<≤

≤<−

01/06/10 20

Properties of logs
• We will assume logs to base 2 unless specified otherwise.
• 8 = 23, so log28 = 3, so 2(log

2
8) = ________

Show:
log (A • B) = log A + log B

A=2log
2
A and B=2log

2
B

A • B = 2log
2
A • 2log

2
B = 2log

2
A+log

2
B

So: log2AB = log2A + log2B

• Note: log AB ≠ log A•log B !!

01/06/10 21

Other log properties
• log A/B = log A – log B

• log (AB) = B log A

• log log X < log X < X for all X > 0
– log log X = Y means:

– log X grows more slowly than X
• called a “sub-linear” function

X2
Y2 =

Note: log log X ≠ log2 X

log2 X = (log X)(log X) aka “log-squared”

01/06/10 22

A log is a log is a log
• “Any base B log is equivalent to base 2 log within a

constant factor.”

Blog
Xlog

Xlog

XlogXlogBlog

22

2)(2

XB

XlogXlog

2

2
B

2B2

XlogXlogBlog

XlogXlogBlog

Xlog

BB

2B2

2B2

B

=

=
=

=

=

=

xlog

Blog

2

2

2x

2B

=

= substitution B = X
by def. of logs

log XB

01/06/10 23

Algorithm Analysis Examples
• Consider the following program segment:

x:= 0;

for i = 1 to N do

for j = 1 to i do

x := x + 1;

• What is the value of x at the end?

01/06/10 24

Analyzing the Loop

• Total number of times x is incremented is
executed =

• An Arithmetic Sequence
• Congratulations - You’ve just analyzed your first

program!
– Running time of the program is proportional to

N(N+1)/2 for all N
– Big-O ??

∑
=

+==++++
N

1i 2
1)N(N

iN ...321

5

Asymptotic Analysis

01/06/10 26

Comparing Two Algorithms

01/06/10 27

What we want
• Rough Estimate

• Ignores Details

01/06/10 28

Big-O Analysis
• Ignores “details”

01/06/10 29

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity
• For today, we’ll focus on time complexity only

• Why analyze at all?

01/06/10 30

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?

6

01/06/10 31

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

01/06/10 32

Big-O: Common Names

– constant: O(1)

– logarithmic: O(log n)

– linear: O(n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)

– exponential: O(cn) (c is a constant > 1)

