

mple: Basis Step of first n powers of $2 = 2^n - 1$	
$2^0 + 2^1 + 2^2 + \ldots + 2^{n-1} = 2^n - 1.$	
$1 + 2 + 4 + \ldots + 2^{n-1} = 2^n - 1.$	
$2^{1-1} = 2^0 = 1$	
$2^1 - 1 = 2 - 1 = 1$	
So true for $n_0 = 1$	6
	mple: Basis Step m of first n powers of $2 = 2^{n} - 1$ $2^{0} + 2^{1} + 2^{2} + + 2^{n \cdot 1} = 2^{n} - 1$. $1 + 2 + 4 + + 2^{n \cdot 1} = 2^{n} - 1$. $2^{1 \cdot 1} = 2^{0} = 1$ $2^{1} - 1 = 2 - 1 = 1$ So true for $n_{0} = 1$

- 1. $X-1 < \lfloor X \rfloor \le X$
- $2. \quad X \leq \left\lceil X \right\rceil < X + 1$

01/06/10

3. $\lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ if n is an integer

19

Why Asymptotic Analysis?

- Most algorithms are fast for small n
 Time difference too small to be noticeable
 External things dominate (OS, disk I/O, ...)
- BUT *n* is often large in practice – Databases, internet, graphics, ...
- Time difference really shows up as *n* grows!

01/06/10

31

01/06/10

Big-O: Common Names - constant: O(1) - logarithmic: $O(\log n)$ - linear: O(n) - quadratic: $O(n^2)$ - cubic: O(n³) - polynomial: $O(n^k)$ (k is a constant) - exponential: O(cⁿ) (c is a constant > 1)

32