
CSE 326 DATA STRUCTURES
HOMEWORK 5

Due: Friday, February 16, 2007 at the beginning of class in the lecture section you are registered in
Please put your quiz section (AA,AB,BA,BB) in addition to your name at the top of your homework

Problem 1. Universal Hashing

Hash functions usually give us very good performance. But one weakness of the fixed hash functions we
have discussed so far is that a malicious set of inputs can lead to O(n) behavior. If someone is trying to slow
down your system, and they have access to submitting inputs to a hash function, they can design a set of
inputs which causes O(n) behavior (even if you spot duplicate inputs.) Is there any way to avoid this?

In this problem we will discuss a method for overcoming this problem called universal hashing. Universal
hashing is is a randomized algorithm for selecting a hash function with the following property: for any two
distinct inputs, the probability that there is a hash collision between these inputs is the same as if the function
was a random function. Thus, if h has function values in a range of size r, the probability of any particular
hash collision should be 1

r .

Let p be a prime number and suppose that we are hashing a pair of numbers x and y which are each
between 0 and p − 1 to a range of size p. In other words our hash function has a domain made up of pairs of
numbers x and y between 0 and p − 1 and a range of numbers between 0 and p − 1. To be clear the domain
is of size p2 and the range of size p. For our hashing function we randomly (and independently) select two
numbers a and b, which are both between 0 and p− 1 and then use these to construct the hash function (this
is the universal hashing step):

h(x, y) = (ax + by) mod p.

(a) Fix two non-identical inputs (x1, y1) and (x2, y2). (They may have the same x or y values, but not both.)
For how many distinct pairs of our random numbers, a and b will these two inputs hash to the same
slot?

(b) If I choose each of a and b uniformly at random from 0, 1, . . . , p− 1 what is the probability that the two
non-identical (x1, y1) and (x2, y2) will hash to the same value?

(c) Given an arbitrary set of n distinct inputs (xi, yi), what is the expected number (over my random
choices of a and b each uniformly from 0 to p − 1) of pairs i, j, i < j, for which h(xi, yi) = h(xj , yj)?
(Recall that the expectation value of a set of random variables X which occur with probability pX is
〈X〉 =

∑
X pXX.)

Problem 2. A Future Hash Table Problem

Later in life you are charged with writing a hash table which uses separate chaining in a very obscure
language which you are not familiar with. Since you’re not familiar with the language you can’t figure out
how to get your linked list working properly when dealing with collisions. So you decide that maybe by making
your hash table big enough you will make it such that the chance of a collision will be negligible and thus your
deficiency won’t be spotted! You know that the program you are writing will be given k elements to hash
so you decide that you’ll use a hash table containing k2 locations. For parts a,b, and c below express your
answer as a function of k in as simple terms (most reduced) as you can.

(a) How many different ways can the k different elements be hashed into the k2 different table locations?



(b) How many of these ways result in no collisions?

(c) If each way has the same probability, then what is the probability of one or more collisions?

(d) Compute this probability for k = 5.

Problem 3. Unions

Do Weiss Problem 8.1.


