
CSE 326 DATA STRUCTURES
HOMEWORK 8 - The Final Homework!

Due: Wednesday, August 15, 2007 at the beginning of class.

1. (a) Give an example of a graph with negative edges but no negative cost cycles where Dijkstra’s
algorithm gives the wrong answer.

(b) Suppose you are given a graph that has negative-cost edges but no negative-cost cycles. Why does
the following strategy fail to find shortest paths: uniformly add a constant k to the cost of every
edge so that all costs become non-negative, run Dijkstra’s algorithm, return the result with edge
costs reverted back to the original costs (i.e. with k subtracted). Give an argument as well as a
small example where it fails. (Hint: the simplest example I can think of uses only three vertices.)

2. Consider the diagram in figure 9.86 in Weiss. For this problem, consider the grid to be the local zoo
(it’s a small zoo), and the black circles are tourists visiting. Unfortunately, someone let the tigers out
of their cage, and the tourists are trying to escape as quickly as they can. As security officer of the
zoo, your job is to figure out if they can do so safely: they each need a path to the edge of the zoo,
such that no two paths intersect. (That way everyone can run madly for the exits without trampling
on someone else.)
Since you took CS326, you realize that this is almost like a maximum-flow problem: your vertices
would be the squares in this zoo; the edges would connect adjacent squares and have capacity 1, you
would create a source node and connect it to the squares where each person starts, and you’d create a
sink and connect it to every square along the perimeter of the zoo. If that were it, your job would be
done: if the maximum flow through this graph is as big as the number of tourists, then the tourists
can all escape safely. But remember, you also need to ensure that no paths cross at all, and maximum
flow doesn’t quite give you that guarantee. You realize that making sure paths don’t cross is the same
as putting capacities on the vertices of the graph! Now if only you could somehow encode vertex
capacities in this graph as edge capacities in a similar graph, you’d be all set. . .
(For a hint on how to do this encoding, see the hints in the next problem. . . )

3. In class we said that the Hamiltonian cycle problem is NP-complete when considering either directed
or undirected graphs, but we didn’t prove it. In this problem, you’ll prove something slightly simpler:
show that Directed-Hamiltonian-Cycle reduces to Undirected-Hamiltonian-Cycle, and also vice versa.
(Then if either of them is NP-complete, both of them are.) Most of the NP-completeness proofs you’ll
see involve some sort of ‘gimmick’ to make the reduction work; I’ll give hints as to what the gimmick
should be.

(a) To reduce Undirected-Hamiltonian-Cycle to Directed-Hamiltonian-Cycle, you are given an undi-
rected graph G, and need to construct a directed graph G′ such that G′ has a directed Hamiltonian
cycle if and only if G has an undirected one. Here, the gimmick is very simple: the directed graph
G′ has to have edges that allow you to go “either way” across an edge in G, so just try using two
edges instead of one.
To prove this reduction, you need to show two things:

i. Can you construct G′ from G in polynomial time?
ii. G′ has a directed Hamiltonian cycle if and only if G has an undirected one.

(b) To reduce Directed-Hamiltonian-Cycle to Undirected-Hamiltonian-Cycle, you are given a directed
graph H and need to construct an undirected graph H ′ such that H ′ has an undirected Hamil-
tonian cycle if and only if H has a directed one. Here, the gimmick is trickier: you need to
create extra vertices that “separate” the incoming and outgoing endpoints of edges. Specifically,
for every vertex h ∈ H, create three vertices in H ′: hin, h′, hout, and create undirected edges
(hin, h′) and (h′, hout). Then for every directed edge (u, v) ∈ H, you’ll create the undirected edge
(uout, vin) ∈ H ′.

i. Can you construct H ′ from H in polynomial time?
ii. H ′ has an undirected Hamiltonian cycle if and only if H has a directed one.

1


