CSE 326: Data Structures Final Exam Review

James Fogarty
Autumn 2007
Lecture n-1

Announcements

- Exam Wednesday 2:30pm, 2 hours, here in ARC 160 - Logistics: same as midterm (closed book)
- Comprehensive
- Everything up to, but not including, Data Compression
- Also not anything about A*
- So look over the midterm review again, in addition to this

k-d Tree Construction (18)

Quad Trees

- Space Partitioning

Hash Tables

- Constant time accesses!
- A hash table is an array of some fixed size, usually a prime number.
- General idea:

key space (e.g., integers, strings)
hash function:

TableSize - 1

Separate Chaining

Insert:
10
22
107
12
42

- Separate chaining: All keys that map to the same hash value are kept in a list (or "bucket").

Open Addressing

	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

Insert:

- Linear Probing: after checking spot $h(k)$, try spot $h(k)+1$, if that is full, try $h(k)+2$, then $h(k)+3$, etc.

Linear Probing

$$
f(i)=i
$$

- Probe sequence:
$0^{\text {th }}$ probe $=h(k)$ mod TableSize
$1^{\text {th }}$ probe $=(h(k)+1)$ mod TableSize
$2^{\text {th }}$ probe $=(h(k)+2) \bmod$ TableSize
$\mathrm{ith}^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+\mathrm{i})$ mod TableSize

Quadratic Probing

$$
f(i)=i^{2}
$$

Less likely
to encounter
Primary
Clustering

- Probe sequence:
$0^{\text {th }}$ probe $=\mathrm{h}(\mathrm{k})$ mod TableSize
$1^{\text {th }}$ probe $=(h(k)+1)$ mod TableSize
$2^{\text {th }}$ probe $=(h(k)+4) \bmod$ TableSize
$3^{\text {th }}$ probe $=(h(k)+9)$ mod TableSize
$\mathrm{i}^{\text {th }}$ probe $=\left(\mathrm{h}(\mathrm{k})+\mathrm{i}^{2}\right)$ mod TableSize

Double Hashing

$$
\begin{aligned}
& f(i)=i * g(k) \\
& \text { where } g \text { is a second hash function }
\end{aligned}
$$

- Probe sequence:
$0^{\text {th }}$ probe $=h(k)$ mod TableSize
$1^{\text {th }}$ probe $=(h(k)+g(k))$ mod TableSize
$2^{\text {th }}$ probe $=\left(h(k)+2^{*} g(k)\right)$ mod TableSize
$3^{\text {th }}$ probe $=\left(h(k)+3^{*} g(k)\right)$ mod TableSize
$i^{\text {th }}$ probe $=\left(h(\underline{k})+i^{*} g(\underline{k})\right)$ mod TableSize

Rehashing

Idea: When the table gets too full, create a bigger table (usually $2 x$ as large) and hash all the items from the original table into the new table.

- When to rehash?
- half full ($\lambda=0.5$)
- when an insertion fails
- some other threshold
- Cost of rehashing?

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Union(x, y) - take the union of two sets named x and y
- Find (x) - return the name of the set containing x.

Up-Tree for DU/F

Initial state (1) (2) (3) (4) (6) 7

Find Operation

- Find(x) follow x to the root and return the root

Find(6) $=7$

Union Operation

- Union(i, j$)$ - assuming i and j roots, point i to j .

Weighted Union

- Weighted Union
- Always point the smaller tree to the root of the larger tree

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Sorting: The Big Picture

Given n comparable elements in an array, sort them in an increasing order.

Simple algorithms: $\mathrm{O}\left(n^{2}\right)$	Fancier algorithms: $\mathrm{O}(n \log n)$	Comparison lower bound: $\Omega(n \log n)$	Specialized algorithms: $\mathrm{O}(n)$	Handling huge data sets
			Bucket sort	External
Insertion sort	Heap sort	Radix sort	sorting	
Selection sort	Merge sort			
Bubble sort	Quick sort			
Shell sort	\ldots			

Insertion Sort: Idea

- At the $k^{\text {th }}$ step, put the $k^{\text {th }}$ input element in the correct place among the first k elements
- Result: After the $k^{\text {th }}$ step, the first k elements are sorted.

Runtime:

$$
\begin{array}{ll}
\text { worst case } & : \\
\text { best case } & : \\
\text { average case } & :
\end{array}
$$

Selection Sort: idea

- Find the smallest element, put it $1^{\text {st }}$
- Find the next smallest element, put it $2^{\text {nd }}$
- Find the next smallest, put it $3^{\text {rd }}$
- And so on ...

HeapSort:
 Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

"Divide and Conquer"

- Very important strategy in computer science:
- Divide problem into smaller parts
- Independently solve the parts
- Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves \rightarrow known as Mergesort
- Idea 2 : Partition array into small items and large items, then recursively sort the two sets \rightarrow known as Quicksort

Mergesort

- Divide it in two at the midpoint
- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the $\mathrm{O}(\mathrm{N})$ extra space that MergeSort does
- Partition array into left and right sub-arrays
- the elements in left sub-array are all less than pivot
- elements in right sub-array are all greater than pivot
- Recursively sort left and rigvht sub-arrays
- Concatenate left and right sub-arrays in O(1) time

Quicksort Example

Decision Tree Example

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result.

Example $K=5$. Input $=(5,1,3,4,3,2,1,1,5,4,5)$

count array	
1	
2	
3	
4	
5	

Running time to sort n items?

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit, least significant to most significant (lsd to msd)

Radix Sort Example (1 ${ }^{\text {st }}$ pass)

	Bucket sort by 1's digit										After $1^{\text {st }}$ pass
Input data											
478											721
537											3
9	0	1	2	3	4	5	6	7	8	9	123
721		721								9	537
3		721		123				${ }^{537}$	48	$\underline{\square}$	67
38											478
123											38
67											9

This example uses $B=10$ and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2 ${ }^{\text {nd }}$ pass)

After $1^{\text {st }}$ pass	Bucket sort by 10's digit										After $2^{\text {nd }}$ pass
3	0	1	2	3	4		6	7	8	9	9
123		1			4	5			8	9	721
537	$\underline{0}$		721	537			$\underline{6}$	$4 \underline{1} 8$			123
67	$\underline{0} 9$		123	$\underline{3} 8$							537
478											38
38											67
9											478

Radix Sort Example (3 ${ }^{\text {rd }}$ pass)

After $2^{\text {nd }}$ pass

3
9
721
123
537
38
67
478

After $3^{\text {rd }}$ pass 3
9
38
67
123
478
537
721

Invariant: after k passes the low order k digits are sorted.

Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects
Graph G = (V,E)

- Set of vertices:

$$
v=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Set of edges:
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each $\mathbf{e}_{\mathbf{i}}$ connects two vertices ($\mathbf{v}_{\mathbf{i} 1}, \mathbf{v}_{\mathbf{i} 2}$)

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

$$
\{\text { Tree }\} \subset\{\mathrm{DAG}\} \subset\{\text { Graph }\}
$$

Rep 1: Adjacency Matrix

A |V| $\mathbf{x}|\mathbf{V}|$ array in which an element (\mathbf{u}, \mathbf{v}) is true if and only if there is an edge from \mathbf{u} to

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Rep 2: Adjacency List

A |V|-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Application: Topological Sort

Given a directed graph, $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, output all the vertices in \mathbf{V} such that no vertex is output before any other vertex with an edge to it.

Minimize and
Is the output unique?
DO a topo sort

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=Q$.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero Q.enqueue(u)

Note: could use a stack, list, set, box, ... instead of a queue
Runtime:

Comparison: DFS versus BFS

- Depth-first search
-Does not always find shortest paths
-Must be careful to mark visited vertices, or you could go into an infinite loop if there is a cycle
- Breadth-first search
-Always finds shortest paths - optimal solutions
-Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate
-Is BFS always preferable?

Iterative-Deepening DFS (II)

- IDFS_Search(Start, Goal_test)
- $\quad i:=1$;
- repeat
answer := Bounded_DFS(Start, Goal_test, i);
if (answer != fail) then return answer;
- $\quad \mathrm{i}:=\mathrm{i}+1$;
- end

Saving the Path

- Our pseudocode returns the goal node found, but not the path to it
- How can we remember the path?
- Add a field to each node, that points to the previous node along the path
- Follow pointers from goal back to start to recover path

Example (Unweighted Graph)

Dijkstra's Algorithm for Single Source Shortest Path

- Similar to breadth-first search, but uses a heap instead of a queue:
- Always select (expand) the vertex that has a lowest-cost path to the start vertex
- Correctly handles the case where the lowestcost (shortest) path to a vertex is not the one with fewest edges

Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Finished or known vertices
- Shortest distance has been computed
- Unknown vertices
- Have tentative distance

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
A	Y	0	
B	Y	2	A
C	Y	1	A
D	Y	4	A
E	Y	11	G
F	Y	4	B
G	Y	8	H
H	Y	7	F

Correctness: The Cloud Proof

How does Dijkstra's decide which vertex to add to the Known set next?

- If path to \mathbf{V} is shortest, path to \mathbf{W} must be at least as long
(or else we would have picked W as the next vertex)
- So the path through \mathbf{W} to \mathbf{V} cannot be any shorter!

The Trouble with Negative Weight Cycles

What's the shortest path from A to E?
Problem?

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.
$\operatorname{Fib}(\mathrm{N})=\mathrm{Fib}(\mathrm{N}-1)+\operatorname{Fib}(\mathrm{N}-2)$

Floyd-Warshall

```
for (int \(k=1 ; k=<\mathrm{V} ; \mathrm{k}++\) )
    for (int \(i=1 ; i=<V\); i++)
    for (int \(j=1 ; j=<\mathrm{V}\); \(\mathrm{j}++\) )
        if ( \(M[i][k]+M[k][j])<M[i][j])\)
            \(M[i][j]=\quad M[i][k]+M[k][j]\)
```

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices $1 . . \mathrm{k}$ as intermediate vertices

Floyd-Warshall for All-pairs shortest path

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

Final Matrix Contents

Network Flows

- Given a weighted, directed graph $G=(\mathrm{V}, \mathrm{E})$
- Treat the edge weights as capacities
- How much can we flow through the graph?

How do we know there's still room?

- Construct a residual graph:
- Same vertices
- Edge weights are the "leftover" capacity on the edges
- Add extra edges for backwards-capacity too!
- If there is a path $s \rightarrow t$ at all, then there is still room

Example (5)

Add the backwards edges, to show we can "undo" some flow

Flow / Capacity Residual Capacity Backwards flow

Example (7)

Final, maximum flow

Residual Capacity Backwards flow

Network Flows

- Create a single source, with infinite capacity edges connected to sources
- Same idea for multiple sinks

Minimum cuts

- If we cut G into (S, T), where S contains the source s and T contains the sink t,
- Of all the cuts (S, T) we could find, what is the smallest (max) flow $f(S, T)$ we will find?

Min Cut - Example (8)

Capacity of cut $=5$

Spanning Tree in a Graph

Vertex = router
Edge = link between routers

Spanning tree

- Connects all the vertices
- No cycles

Spanning Tree Algorithm

ST(i: vertex)

mark i;
for each j adjacent to i do if j is unmarked then Add $\{i, j\}$ to T; ST(j);
end\{ST\}

Main
$\mathrm{T}:=$ empty set;
$\mathrm{ST}(1) ;$
end\{Main\}

Example Step 16

$\{1,2\}\{2,7\}\{7,5\}\{5,4\}\{4,3\}\{5,6\}$

Minimum Spanning Trees

Given an undirected graph $G=(\mathrm{V}, \mathrm{E})$, find a graph $G^{\prime}=\left(V, E^{\prime}\right)$ such that:
$-E^{\prime}$ is a subset of E

- |E'| = |V|-1
$-G^{\prime}$ is connected
is minimal

$$
\sum_{(u, v) \in E^{\prime}} \mathrm{c}_{u v}
$$

Applications: wiring a house, power grids, Internet connections

Find the MST

Two Different Approaches

Prim's Algorithm
Looks familiar!

Kruskals's Algorithm Completely different!

Prim's algorithm

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.

Start with V_{1}
Find MST using Prim's

V	Kwn	Distance	path
v1			
v2			
v3			
v4			
v5			
v6			
v7			

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

Kruskal's Algorithm for MST

An edge-based greedy algorithm

Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected
- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u, v) and mark it
b. If \mathbf{u} and \mathbf{v} are not already connected, add (\mathbf{u}, \mathbf{v}) to the MST and mark \mathbf{u} and v as connected to each other

Doesn't it sound familiar?

Example of Kruskal 8,9

