CSE 326: Data Structures Final Exam Review

James Fogarty Autumn 2007 Lecture *n - 1*

Announcements

- Exam Wednesday 2:30pm, 2 hours, here in ARC 160
 - Logistics: same as midterm (closed book)
- Comprehensive
 - Everything up to, but not including, Data Compression
 - Also not anything about A*
 - So look over the midterm review again, in addition to this

k-d Tree Construction (18)

Quad Trees

• Space Partitioning

Hash Tables

- Constant time accesses!
- A hash table is an array of some fixed size, usually a prime number.
- General idea:

key space (e.g., integers, strings)

hash function: **h(K)** hash table

Separate Chaining

Separate chaining:

All keys that map to the same hash value are kept in a list (or "bucket").

Open Addressing

 Linear Probing: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Linear Probing

f(i) = i

• Probe sequence:

 $0^{th} \text{ probe} = h(k) \mod \text{TableSize}$ $1^{th} \text{ probe} = (h(k) + 1) \mod \text{TableSize}$ $2^{th} \text{ probe} = (h(k) + 2) \mod \text{TableSize}$

 i^{th} probe = (h(k) + i) mod TableSize

Quadratic Probing

 $f(i) = i^2$

Less likely to encounter Primary Clustering

• Probe sequence:

 $0^{th} \text{ probe} = h(k) \mod \text{TableSize}$ $1^{th} \text{ probe} = (h(k) + 1) \mod \text{TableSize}$ $2^{th} \text{ probe} = (h(k) + 4) \mod \text{TableSize}$ $3^{th} \text{ probe} = (h(k) + 9) \mod \text{TableSize}$

 i^{th} probe = (h(k) + i²) mod TableSize

Double Hashing

f(i) = i * g(k)where g is a second hash function

• Probe sequence:

 $0^{th} \text{ probe} = h(k) \mod \text{TableSize}$ $1^{th} \text{ probe} = (h(k) + g(k)) \mod \text{TableSize}$ $2^{th} \text{ probe} = (h(k) + 2^*g(k)) \mod \text{TableSize}$ $3^{th} \text{ probe} = (h(k) + 3^*g(k)) \mod \text{TableSize}$

 i^{th} probe = (h(<u>k</u>) + i*g(<u>k</u>)) mod TableSize

Rehashing

- Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.
- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.

- {3,5,7} , {4,2,8}, {9}, {1,6}

 Each set has a unique name, one of its members

 $- \{3, \underline{5}, 7\}, \{4, 2, \underline{8}\}, \{\underline{9}\}, \{\underline{1}, 6\}$

- Union(x,y) take the union of two sets named x and y
- Find(x) return the name of the set containing x.

Up-Tree for DU/F

Find Operation

• Find(x) follow x to the root and return the root

Union Operation

• Union(i,j) - assuming i and j roots, point i to j.

Weighted Union

- Weighted Union
 - Always point the smaller tree to the root of the larger tree

Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

Sorting: The Big Picture

Given *n* comparable elements in an array, sort them in an increasing order.

. . .

Insertion Sort: Idea

- At the kth step, put the kth input element in the correct place among the first k elements
- Result: After the *k*th step, the first *k* elements are sorted.

Runtime:

- worst case
- best case
- average case :

Selection Sort: idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd
- And so on ...

HeapSort: Using Priority Queue ADT (heap)

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

"Divide and Conquer"

- Very important strategy in computer science:
 - Divide problem into smaller parts
 - Independently solve the parts
 - Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves → known as Mergesort
- Idea 2 : Partition array into small items and large items, then recursively sort the two sets → known as Quicksort

- Conquer each side in turn (by recursively sorting)
- Merge two halves together

Mergesort Example

24

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 - the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - Recursively sort left and rigvht sub-arrays
 - Concatenate left and right sub-arrays in O(1) time

Quicksort Example

26

Decision Tree Example

BucketSort (aka BinSort)

If all values to be sorted are *known* to be between 1 and K, create an array count of size K, **increment** counts while traversing the input, and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

Running time to sort n items?

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>: BucketSort on each **digit**, least significant to most significant (lsd to msd)

Radix Sort Example (1st pass)

This example uses B=10 and base 10 digits for simplicity of demonstration. Larger bucket counts should be used in an actual implementation.

Radix Sort Example (2nd pass)

Radix Sort Example (3rd pass)

Invariant: after k passes the low order k digits are sorted.

Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects
 Graph G = (V,E)
 - Set of vertices:

$$V = \{v_1, v_2, ..., v_n\}$$

- Set of edges: E = {e₁,e₂,...,e_m} where each e_i connects two vertices (v_{i1},v_{i2})

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

 ${\text{Tree}} \subset {\text{DAG}} \subset {\text{Graph}}$

Rep 1: Adjacency Matrix

A |v| x |v| array in which an element (u,v) is true if and only if there is an edge from u to v

Runtimes: Iterate over vertices? Iterate over edges? Iterate edges adj. to vertex? Existence of edge?

Space requirements?

35

Rep 2: Adjacency List

A |v|-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Existence of edge?

Space requirements?

This is a partial ordering, for sorting we had a total ordering Application: Topological Sort

Given a directed graph, G = (v, E), output all the vertices in v such that no vertex is output before any other vertex with an edge to it.

Topological Sort: Take Two

- 1. Label each vertex with its in-degree
- 2. Initialize a queue Q to contain all in-degree zero vertices
- 3. While Q not empty
 - a. v = Q.dequeue; output v
 - b. Reduce the in-degree of all vertices adjacent to v
 - c. If new in-degree of any such vertex *u* is zero Q.enqueue(*u*)

Note: could use a stack, list, set, box, ... instead of a queue

Runtime:

Comparison: DFS versus BFS

- Depth-first search
 - -Does not always find shortest paths
 - -Must be careful to mark visited vertices, or you could go into an infinite loop if there is a cycle
- Breadth-first search
 - -Always finds shortest paths optimal solutions
 - -Marking visited nodes can improve efficiency, but even without doing so search is guaranteed to terminate

-Is BFS always preferable?

Iterative-Deepening DFS (II)

- IDFS_Search(Start, Goal_test)
- i := 1;
- repeat
- answer := Bounded_DFS(Start, Goal_test, i);
- if (answer != fail) then return answer;
- i := i+1;
- end

Saving the Path

- Our pseudocode returns the goal node found, but not the path to it
- How can we remember the path?
 - Add a field to each node, that points to the previous node along the path
 - Follow pointers from goal back to start to recover path

Example (Unweighted Graph)

Dijkstra's Algorithm for Single Source Shortest Path

- Similar to breadth-first search, but uses a heap instead of a queue:
 - Always select (expand) the vertex that has a lowest-cost path to the start vertex
- Correctly handles the case where the lowestcost (shortest) path to a vertex is not the one with fewest edges

Dijkstra's Algorithm: Idea

Adapt BFS to handle weighted graphs

Two kinds of vertices:

- Finished or known vertices
 - Shortest distance has been computed
- Unknown vertices
 - Have tentative distance

Dijkstra's Algorithm in action

Vertex	Visited?	Cost	Found by
А	Y	0	
В	Y	2	А
С	Y	1	А
D	Y	4	А
E	Y	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

Correctness: The Cloud Proof

How does Dijkstra's decide which vertex to add to the Known set next?

- If path to v is shortest, path to w must be at least as long (or else we would have picked w as the next vertex)
- So the path through w to v cannot be any shorter!

The Trouble with Negative Weight Cycles

What's the shortest path from A to E?

Problem?

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and <u>re-uses</u> those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number. Fib(N) = Fib(N-1) + Fib(N-2)

Floyd-Warshall

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

Floyd-Warshall for All-pairs shortest path

	а	b	С	d	е
а	0	2	0	-4	0
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

Final Matrix Contents

Network Flows

- Given a weighted, directed graph G=(V,E)
- Treat the edge weights as capacities
- How much can we flow through the graph?

How do we know there's still room?

- Construct a residual graph:
 - Same vertices
 - Edge weights are the "leftover" capacity on the edges
 - Add extra edges for backwards-capacity too!
 - If there is a path s \rightarrow t at all, then there is still room

Example (5)

Add the backwards edges, to show we can "undo" some flow

Example (7)

Final, maximum flow

Network Flows

- Create a single source, with infinite capacity edges connected to sources
- Same idea for multiple sinks

Minimum cuts

- If we cut G into (S, T), where S contains the source s and T contains the sink t,
- Of all the cuts (S, T) we could find, what is the smallest (max) flow f(S, T) we will find?

Min Cut - Example (8)

Spanning Tree in a Graph

Vertex = router Edge = link between routers Spanning tree

- Connects all the vertices
- No cycles

Spanning Tree Algorithm

```
ST(i: vertex)
mark i;
for each j adjacent to i do
if j is unmarked then
Add {i,j} to T;
ST(j);
end{ST}
```

Main T := empty set; ST(1); end{Main}

Example Step 16

 $\{1,2\}\ \{2,7\}\ \{7,5\}\ \{5,4\}\ \{4,3\}\ \{5,6\}$

ST(1)

Minimum Spanning Trees

Given an undirected graph G=(V,E), find a graph G'=(V, E') such that:

- E' is a subset of E
- |E'| = |V| 1
- G' is connected
 - is minimal

G' is a minimum spanning tree.

 $(u,v) \in E'$ **Applications**: wiring a house, power grids, Internet connections

Find the MST

Two Different Approaches

Prim's Algorithm Looks familiar!

Kruskals's Algorithm Completely different!

Prim's algorithm

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.

Kruskal's Algorithm for MST

An *edge-based* greedy algorithm Builds MST by greedily adding edges

- 1. Initialize with
 - empty MST
 - all vertices marked unconnected
 - all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the lowest cost edge (u,v) and mark it
 - b. If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Example of Kruskal 8,9

 $\{7,4\}$ $\{2,1\}$ $\{7,5\}$ $\{5,6\}$ $\{5,4\}$ $\{1,6\}$ $\{2,7\}$ $\{2,3\}$ $\{3,4\}$ $\{1,5\}$ 0 1 1 2 2 3 3 3 4