
CSE 326: Data Structures
Final Exam Review

James Fogarty
Autumn 2007
Lecture n - 1

2

Announcements

• Exam Wednesday 2:30pm, 2 hours, here in ARC 160
– Logistics: same as midterm (closed book)

• Comprehensive
– Everything up to, but not including, Data Compression
– Also not anything about A*
– So look over the midterm review again, in addition to this

3

y

k-d Tree Construction (18)

x

a
b

c

g h

ed

i s1

s2
y y

s6

s3
x

s4
y

s7
y

s8
y

s5
x

s1

s2

s3

s4

s5

s6

s7

s8

a b

d e

g c f h i

x

f

k-d tree cell

4

Quad Trees

• Space Partitioning

x

y

a
b

c

g

ed f g e

d ba cf

5

Hash Tables

• Constant time accesses!
• A hash table is an array of some

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

…

0

TableSize –1

hash function:
h(K)

hash table

6

Separate Chaining

• Separate chaining:
All keys that map to
the same hash value
are kept in a list (or
“bucket”).

2

3

9

8

7

6

5

4

1

0
Insert:
10
22
107
12
42

7

Open Addressing

2

3

9

8

7

6

5

4

1

0

Insert:
38
19
8
109
10

• Linear Probing:
after checking spot
h(k), try spot h(k)+1,
if that is full, try
h(k)+2, then h(k)+3,
etc.

8

Linear Probing

f(i) = i

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 2) mod TableSize
. . .
ith probe = (h(k) + i) mod TableSize

9

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely
to encounter
Primary
Clustering

10

Double Hashing

f(i) = i * g(k)
where g is a second hash function

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + g(k)) mod TableSize
2th probe = (h(k) + 2*g(k)) mod TableSize
3th probe = (h(k) + 3*g(k)) mod TableSize
. . .
ith probe = (h(k) + i*g(k)) mod TableSize

11

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash all
the items from the original table into the new
table.

• When to rehash?
– half full (λ = 0.5)
– when an insertion fails
– some other threshold

• Cost of rehashing?

Rehashing

12

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its
members
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Union(x,y) – take the union of two sets named
x and y

• Find(x) – return the name of the set
containing x.

13

Up-Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

14

Find Operation

• Find(x) follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7

15

Union Operation

• Union(i,j) - assuming i and j roots, point i to j.

1

2

3

45

6

7
Union(1,7)

16

Weighted Union

• Weighted Union
– Always point the smaller tree to the root of the

larger tree

1

2

3

45

6

7
W-Union(1,7)

2 41

17

Path Compression

• On a Find operation point all the nodes on the search
path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

18

Sorting: The Big Picture

Given n comparable elements in an array, sort
them in an increasing order.

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Bubble sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

19

Insertion Sort: Idea

• At the kth step, put the kth input element in the
correct place among the first k elements

• Result: After the kth step, the first k elements
are sorted.

Runtime:
worst case :
best case :
average case :

20

Selection Sort: idea

• Find the smallest element, put it 1st

• Find the next smallest element, put it 2nd

• Find the next smallest, put it 3rd

• And so on …

21

HeapSort:
Using Priority Queue ADT (heap)

756

27
18

801
35

13
23 44

87

8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

22

“Divide and Conquer”

• Very important strategy in computer science:
– Divide problem into smaller parts
– Independently solve the parts
– Combine these solutions to get overall solution

• Idea 1: Divide array into two halves, recursively sort
left and right halves, then merge two halves
known as Mergesort

• Idea 2 : Partition array into small items and large
items, then recursively sort the two sets known as
Quicksort

23

Mergesort

• Divide it in two at the midpoint
• Conquer each side in turn (by recursively

sorting)
• Merge two halves together

8 2 9 4 5 3 1 6

24

Mergesort Example

8 2 9 4 5 3 1 6

8 2 1 69 4 5 3

8 2 9 4 5 3 1 6

2 8 4 9 3 5 1 6

2 4 8 9 1 3 5 6

1 2 3 4 5 6 8 9

Merge

Merge

Merge

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

25

Quicksort

• Quicksort uses a divide and conquer strategy, but
does not require the O(N) extra space that MergeSort
does
– Partition array into left and right sub-arrays

• the elements in left sub-array are all less than pivot
• elements in right sub-array are all greater than pivot

– Recursively sort left and rigvht sub-arrays
– Concatenate left and right sub-arrays in O(1) time

26

Quicksort Example

2 4 3 1 8 9 6

2 1 94 6

2

1 2

1 2 3 4 6 8 9

1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide
1 element

8 2 9 4 5 3 1 6

5

83

1

27

Decision Tree Example

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

28

BucketSort (aka BinSort)
If all values to be sorted are known to be between 1 and K,
create an array count of size K, increment counts while
traversing the input, and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

5

4

3

2

1

count array

Running time to sort n items?

29

Fixing impracticality: RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be

anything

• Idea: BucketSort on each digit,
least significant to most significant
(lsd to msd)

30

67
123

38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

Radix Sort Example (1st pass)

721
3

123
537
67

478
38
9

After 1st pass

31

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example (2nd pass)

721
3

123
537
67

478
38
9

After 1st pass After 2nd pass
3
9

721
123
537
38
67

478

32

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example (3rd pass)

After 2nd pass
3
9

721
123
537
38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

33

Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing
relationships between objects
Graph G = (V,E)
– Set of vertices:
V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em}
where each ei connects two
vertices (vi1,vi2)

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia),

(Han, Leia),
(Leia, Han)}

34

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program call-
graph is a DAG, then all
procedure calls can be in-
lined

{Tree} ⊂ {DAG} ⊂ {Graph}

35

Rep 1: Adjacency Matrix

A |V| x |V| array in which an element (u,v)
is true if and only if there is an edge from u to
v

Han

Leia

Luke

Han Luke Leia
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

36

Rep 2: Adjacency List

A |V|-ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

37

Application: Topological Sort
Given a directed graph, G = (V,E), output all the

vertices in V such that no vertex is output before any
other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

This is a partial ordering, for sorting we had a total ordering

Minimize and
DO a topo sort

38

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero

vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
box, … instead of a queue

39

Comparison: DFS versus BFS

• Depth-first search
–Does not always find shortest paths
–Must be careful to mark visited vertices, or you could go into

an infinite loop if there is a cycle

• Breadth-first search
–Always finds shortest paths – optimal solutions
–Marking visited nodes can improve efficiency, but even

without doing so search is guaranteed to terminate

–Is BFS always preferable?

40

Iterative-Deepening DFS (II)
• IDFS_Search(Start, Goal_test)
• i := 1;
• repeat
• answer := Bounded_DFS(Start, Goal_test, i);
• if (answer != fail) then return answer;
• i := i+1;
• end

41

Saving the Path

• Our pseudocode returns the goal node found,
but not the path to it

• How can we remember the path?
– Add a field to each node, that points to the

previous node along the path
– Follow pointers from goal back to start to recover

path

42

Example (Unweighted Graph)

Seattle

San Francisco
Dallas

Salt Lake City

43

Dijkstra’s Algorithm for
Single Source Shortest Path

• Similar to breadth-first search, but uses a
heap instead of a queue:
– Always select (expand) the vertex that has a

lowest-cost path to the start vertex
• Correctly handles the case where the lowest-

cost (shortest) path to a vertex is not the one
with fewest edges

44

Dijkstra’s Algorithm: Idea

Adapt BFS to handle
weighted graphs

Two kinds of vertices:
– Finished or known

vertices
• Shortest distance

has
been computed

– Unknown vertices
• Have tentative

distance

45

Dijkstra’s Algorithm in action

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1

9

2

4

F

H

B

G

A

A

A

Found by

7YH

8YG

4YF

11YE

4YD

1YC

2YB

0YA

CostVisited?Vertex

46

The Known
Cloud

V

Next shortest path from
inside the known cloud

W

Better path
to V? No!

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next?
• If path to V is shortest, path to W must be at least as long

(or else we would have picked W as the next vertex)
• So the path through W to V cannot be any shorter!

Source

47

The Trouble with
Negative Weight Cycles

A B

C D

E

2 10

1-5

2

What’s the shortest path from A to E?

Problem?

48

Dynamic Programming

Algorithmic technique that systematically
records the answers to sub-problems in a
table and re-uses those recorded results
(rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci
number.

Fib(N) = Fib(N-1) + Fib(N-2)

49

Floyd-Warshall
for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ((M[i][k]+ M[k][j]) < M[i][j])

M[i][j] = M[i][k]+ M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest paths for all
pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

50

0----e

40---d

1-0--c

-11-20-b

0-4020a

edcba

b

c

d e

a

-4

2
-2

1

31

4

Floyd-Warshall -
for All-pairs
shortest path

Final Matrix
Contents

51

Network Flows

• Given a weighted, directed graph G=(V,E)
• Treat the edge weights as capacities
• How much can we flow through the graph?

A

C

B

D

F
H

G

E

1
7

11

5
6

4

12

13

23

9

10

4
I

6
11

20

52

How do we know there’s still room?

• Construct a residual graph:
– Same vertices
– Edge weights are the “leftover” capacity on the

edges
– Add extra edges for backwards-capacity too!

– If there is a path s t at all, then there is still room

53

Example (5)

3/3

0/2

0/2

1/1
2/2

2/2

0/4

3/4

Flow / Capacity
Residual Capacity
Backwards flow

0

2

4

0

0

1

0

2

2

1

2

3

3

A

B C

D

FE

Add the backwards edges, to show we can “undo” some flow

54

Example (7)

3/3

2/2

2/2

1/1
0/2

2/2

2/4

3/4

Flow / Capacity
Residual Capacity
Backwards flow

A

B C

D

FE

Final, maximum flow

55

Network Flows

• Create a single source, with infinite capacity
edges connected to sources

• Same idea for multiple sinks

s

C

B

s

F
H

G

E

1
7

11

5
6

4

12

13

23

9

10

4
t

6
11

20

s!

∞

∞

56

Minimum cuts

• If we cut G into (S, T), where S contains the
source s and T contains the sink t,

• Of all the cuts (S, T) we could find, what is the
smallest (max) flow f(S, T) we will find?

57

Min Cut - Example (8)

A

B C

D

FE

3

2

2

1

2

2

4

4

TS

Capacity of cut = 5

58

Spanning Tree in a Graph

Vertex = router
Edge = link between routers

Spanning tree
- Connects all the vertices
- No cycles

59

Spanning Tree Algorithm

ST(i: vertex)
mark i;
for each j adjacent to i do

if j is unmarked then
Add {i,j} to T;
ST(j);

end{ST}

Main
T := empty set;
ST(1);
end{Main}

60

Example Step 16

1
2

3

4

5

6

7

ST(1)

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

61

Minimum Spanning Trees
Given an undirected graph G=(V,E), find a

graph G’=(V, E’) such that:
– E’ is a subset of E
– |E’| = |V| - 1
– G’ is connected
– is minimal

Applications: wiring a house, power grids,
Internet connections

∑
∈ '),(

c
Evu

uv

G’ is a minimum
spanning tree.

62

Find the MST

A

C

B

D

F
H

G

E

1
7

6

5
11

4

12

13

2
3

9

10

4

63

Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!

64

Prim’s algorithm

Idea: Grow a tree by adding an edge from the
“known” vertices to the “unknown” vertices.
Pick the edge with the smallest weight.

G

v

known

65

Find MST using
Prim’s v4

v7

v2

v3 v5

v6

v1

Start with V1

2

2

5

4
7

1 10

4 6

3

8

1
v1

v7

v6

v5

v4

v3

v2

pathDistanceKwnV

Your Turn

Order Declared Known:
V1

66

Kruskal’s MST Algorithm

Idea: Grow a forest out of edges that do not
create a cycle. Pick an edge with the
smallest weight.

G=(V,E)

v

67

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
• empty MST
• all vertices marked unconnected
• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it
b. If u and v are not already connected, add (u,v) to the MST

and mark u and v as connected to each other

Doesn’t it sound familiar?

68

Example of Kruskal 8,9

1

6
5

4

7

2

33
3

4 0

2 2

1
3

{7,4} {2,1} {7,5} {5,6} {5,4} {1,6} {2,7} {2,3} {3,4} {1,5}
0 1 1 2 2 3 3 3 3 4

1 3

