CSE 326: Data Structures
Final Exam Review

James Fogarty
Autumn 2007
Lecturen-1

Announcements

 Exam Wednesday 2:30pm, 2 hours, here in ARC 160
— Logistics: same as midterm (closed book)

« Comprehensive
— Everything up to, but not including, Data Compression
— Also not anything about A*
— So look over the midterm review again, in addition to this

k-d Tree Construction (18)

k-d tree cell
/ X
i sl
@
g y
@ s8 h. <o
s4 e s6
® fo X y y
SS s3 s4 s7
s2
b s7
a ® C a b [X g ¢C
® s
s3 sl

Quad Trees

e Space Partitioning

L —1

Yo [\
d e . [\
[0) © '® g

b
? Co

Hash Tables

e Constant time accesses! hash table

« A hash table is an array of some 0

fixed size, usually a prime number.

e General iIdea:

hash function:

h(K)

>

key space (e.g., integers, strings) TableSize —1

© 00O N o 0o Ao W NN P O

Separate Chaining

Insert:

10

22
107

12

42

e Separate chaining:

All keys that map to

the same hash value
are kept in a list (or

“bucket”).

© 00 N O 01 A~ W NN P O

Open Addressing

Insert:
38

19

8

109
10

e Linear Probing:

after checking spot
h(k), try spot h(k)+1,

If that is full, try

h(K)+2, then h(k)+3,

etc.

Linear Probing
f(i) = |

* Probe sequence:
Ot probe = h(k) mod TableSize
1t probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 2) mod TableSize

i probe = (h(k) + i) mod TableSize

Quadratic Probing Less likely

to encounter
Primary
Clustering

(i) = i2

* Probe sequence:
O probe = h(k) mod TableSize
1t probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3t probe = (h(k) + 9) mod TableSize

i probe = (h(k) + i2) mod TableSize

Double Hashing

f(1) =1* g(k)
where g Is a second hash function

* Probe sequence:
Ot probe = h(k) mod TableSize
1t probe = (h(k) + g(k)) mod TableSize
2th probe = (h(k) + 2*g(k)) mod TableSize
3 probe = (h(k) + 3*g(k)) mod TableSize

ith probe = (h(k) + i*g(k)) mod TableSize

10

Rehashing

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash all
the items from the original table into the new

table.

e When to rehash?

— half full (A = 0.5)
— when an insertion fails
— some other threshold

e Cost of rehashing?

11

Disjoint Union - Find

Maintain a set of pairwise disjoint sets.
- {3,5,7}, {4,2,8}, {9}, {1,6}

Each set has a unigue name, one of its
members

_ {31517} J {4121§}’ {9}1 {116}
Union(X,y) — take the union of two sets named
xandy

Find(x) — return the name of the set
containing Xx.

12

Up-Tree for DU/F

Initial state @ @ @ @ @ @ @

Intermediate (1) (3) (7)
State \ ,/
Roots are the names of each set. é

13

Find Operation

* Find(x) follow x to the root and return the root

@

@{

Find(6) = 7

14

Union Operation

e Union(i,)) - assuming | and | roots, point i to |.

Union(1,7)

15

Weighted Union

e Weighted Union

— Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

16

Path Compression

e On a Find operation point all the nodes on the search
path directly to the root.

Y et s
: @/@4 e g

10

17

Sorting: The BIQ Picture

Given n comparable elements in an array, sort
them in an increasing order.

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
\ N / /
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Bubble sort Quick sort

Shell sort

18

Insertion Sort:; Idea

« Atthe ki step, put the k" input element in the
correct place among the first k elements

* Result: After the k" step, the first k elements
are sorted.

Runtime:

worst case
best case
average case

19

Selection Sort: Idea

Find the smallest element, put it 18t

Find the next smallest element, put it 2nd
Find the next smallest, put it 3

And so on ...

20

HeapSort:
Using Priority Queue ADT (heap)

87
23 44 756

13 18
801 57

25

AR
(@8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

21

“Divide and Conquer”

 Very important strategy in computer science:
— Divide problem into smaller parts
— Independently solve the parts
— Combine these solutions to get overall solution

e |dea 1: Divide array into two halves, recursively sort
left and right halves, then merge two halves -
known as Mergesort

 |dea 2 : Partition array into small items and large

items, then recursively sort the two sets = known as
Quicksort

22

Mergesort

812191453 |1]6

Divide it in two at th;}idpoint

Conquer each side in turn (by recursively
sorting)

Merge two halves together

23

Divide -
o 82 9 4 5 31

Divide — T <N
... 8 9 4 S 3 16
Divide 7\ 7\ <\ 2\

1l element § 2 9 4 5 3 1
w4 W4 w4 w4
Merge) g 4 9 3 5 1 6

£ 24809 1356

Mergesort Example

Merge | » 345 6 8 9

24

Quicksort

* Quicksort uses a divide and conguer strategy, but
does not require the O(N) extra space that MergeSort
does

— Partition array into left and right sub-arrays
 the elements in left sub-array are all less than pivot
e elements in right sub-array are all greater than pivot
— Recursively sort left and rigvht sub-arrays
— Concatenate left and right sub-arrays in O(1) time

25

Quicksort Example

Divide — 5 >
- 24 3 1 - 8 9 6
Divide 4/3 T~ o \
. 2 1 = 4 6 3
Divide T\
l element 1 2
Conquer 1'[/
N }
Conquer1 B 6 2 0
! —

Conquer | 53 4 5 6 8 9

Decision Tree Example

a<b<c
c<a<b
a<c<b

— b

a<b<c, b<c<a,
c<a<b, a<c<b,
b<a<c, c<b<a

/ possible orders

a<c‘:/\ia>c

a<c<b

b<ﬁ//ﬂ\\g>c

a<b<c c<a<b

a<b<c a<c<b

P actual order

a%

b<c<a
b<a<c
c<b<a

b<.C/\t3>C
b<c<a c<b<a
b<a<c

c<y\>a
b<c<a b<a<c

27

BucketSort (aka BinSort)

If all values to be sorted are known to be between 1 and K,
create an array count of size K, increment counts while
traversing the input, and finally output the result.

Example K=5. Input=(5,1,3,4,3,2,1,1,5,4,5)

count alray

1

—

Running time to sort n items?

G|l b~ OW|IDN

28

Fixing impracticality: RadixSort

 Radix = “The base of a number system”

— We'll use 10 for convenience, but could be
anything

* |dea: BucketSort on each diqgit,
least significant to most significant
(Isd to msd)

29

Radix Sort Example (15t pass)

Input data

478
537
9
721
3
38
123
67

Bucket sort
by 1's digit

1 2 3 4) 6 7 8 9
721 3 537 | 478 9
123 67| 38

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

721
3
123
537
67
478
38
9

After 15t pass

30

Radix Sort Example (2" pass)

Bucket sort

After 15t pass by 10's After 2"d pass

721 digit 3

3 9
123 0 1 2 3 4 5 6 V4 8 9 721
537 03 721 | 537 67 | 478 123

67 0 123} 38 537
478 38

38 67

9 478

31

Radix Sort Example (3 pass)

Bucket sort

After 2" pass After 3 pass

by 100’s

3 digit 3

9 9
791 O|1 |2 |3 |4|5|6|7]|8]|29 38
123 003 | 123 478 | 537 721 67
537 009 123
38 038 478
67 067 537
478 721

Invariant: after k passes the low order k digits are sorted.

32

Graph... ADT?

 Not quite an ADT...
operations not clear

e A formalism for representing
relationships between objects
Graph G = (V,E)
— Set of vertices:
V — {Vl’VZ""’Vn}

— Set of edges:

E = {e,,e,,...e.}
where each e; connects two

vertices (V;;,V;»)

Han Luke

Leia

{Han, Leira, Luke}

{(Luke, Leia),
(Han, Lera),
(Leia, Han)}

m <

33

Directed Acyclic Graphs (DAGS)

DAGs are directed main()
graphs with no
(directed) cycles.

mult()
dd

Aside: If program call- 2dd0

graph is a DAG, then all

procedure calls can be In- readO)

lined access()

{Tree} < {DAG} < {Graph} 34

Rep 1: Adjacency Matrix

A |V] x |V] array in which an element (u,v)
IS true if and only if there is an edge from u to

V
Han Luke Leia
Han
Han Luke
Luke
Leia
Runtimes: Leia

Iterate over vertices?
Iterate over edges?

Iterate edges adj]. to vertex? Space realirements?
Existence of edge? P g - 35

Rep 2: Adjacency List

A |V]-ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han
Han Luke
Luke

Leia

_ Leia
Runtimes:

Iterate over vertices?
Iterate over edges?

Iterate edges adj]. to vertex? Space realirements?
Existence of edge? P g - 36

This 1s a partial ordering, for sorting we had a total ordering

Application: Topological Sort

Given a directed graph, G = (V,E), output all the
vertices in V such that no vertex is output before any
other vertex with an edge to it.

Minimize and
Is the output unique? DO a topo sort

Topological Sort: Take Two

1. Label each vertex with its in-degree

2. Initialize a queue Q to contain all in-degree zero
vertices
3. While Q not empty
a. Vv =Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.engueue(u)

Note: could use a stack, list, set,

_ box, ... instead of a queue
Runtime:

38

Comparison: DFS versus BFS

Depth-first search
—Does not always find shortest paths

—Must be careful to mark visited vertices, or you could go into
an infinite loop if there is a cycle

Breadth-first search
—Always finds shortest paths — optimal solutions

—Marking visited nodes can improve efficiency, but even
without doing so search is guaranteed to terminate

—Is BFS always preferable?

39

Iterative-Deepening DFS (lI)

IDFS_Search(Start, Goal test)
| :=1;
repeat
answer .= Bounded DFS(Start, Goal_test, i);
If (answer != fail) then return answer;
| = 1+1;
end

40

Saving the Path

e Our pseudocode returns the goal node found,
but not the path to it

 How can we remember the path?

— Add a field to each node, that points to the
previous node along the path

— Follow pointers from goal back to start to recover
path

41

Example (Unweighted Graph)

San Francisco

Dallas

42

Dijkstra’s Algorithm for
Single Source Shortest Path

o Similar to breadth-first search, but uses a
heap instead of a queue:
— Always select (expand) the vertex that has a
lowest-cost path to the start vertex
e Correctly handles the case where the lowest-
cost (shortest) path to a vertex is not the one
with fewest edges

43

Dijkstra’s Algorithm: Idea

Adapt BFS to handle
weighted graphs

Two kinds of vertices:

— Finished or known
vertices
 Shortest distance
has
been computed
Unknown vertices

e Have tentative
distance

44

Dijkstra’s Algorithm in action
2

Vertex

Visited?

A

Y

T O T | mMm{OlO| m

<|=<|=<|=<|=<|=<|=

45

Correctness: The Cloud Proof

Next shortest path from
inside the known cloud

//

Better path
to V? Nol

Source

How does Dijkstra’s decide which vertex to add to the Known set next?
« |If path to V is shortest, path to W must be at least as long
(or else we would have picked W as the next vertex)
« So the path through W to V cannot be any shorter! 46

The Trouble with
Negative Weight Cycles

(D—2—(B)

1

@

What’s the shortest path from A to E?

Problem?

47

Dynamic Programming

Algorithmic technigue that systematically
records the answers to sub-problems in a
table and re-uses those recorded results
(rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci
number.
Fib(N) = Fib(N-1) + Fib(N-2)

48

Floyd-Warshall

for (int k = 1; k =< V; k++)
for (int 1 = 1; 1 =< V; i++)
for (int j = 1; j =< V; j++)
it C C MORJEkd+ MEKIDOT) < MOl)
ML D] = MLl Lk]+ MLKIL3]

Invariant: After the kth iteration, the matrix includes the shortest paths for all
pairs of vertices (1,]) containing only vertices 1..k as intermediate vertices

49

Floyd-Warshall -
for All-pairs
shortest path

a |b |c |d |e
2 |0 |4 10
- |0 |2 |1 |1 Final Matrix
Contents

| | 0| Tl o
1
1
o
1
=

50

Network Flows

* Given a weighted, directed graph G=(V,E)
* Treat the edge weights as capacities
« How much can we flow through the graph?

How do we know there’s still room?

e Construct a residual graph:
— Same vertices

— Edge weights are the “leftover” capacity on the
edges

— Add extra edges for backwards-capacity too!

— If there is a path s—>t at all, then there is still room

52

Example (5)
Add the backwards edges, to show we can “undo”

0/2

Flow / Capacity “
Residual Capacity

Backwards flow

some flow

53

Example (7)

Final, maximum flow

2/2

Flow / Capacity
Residual Capacity
Backwards flow o4

Network Flows

e Create a single source, with infinite capacity
edges connected to sources

o Same idea for multiple sinks

Minimum cuts

e |Ifwe cut Ginto (S, T), where S contains the
source s and T contains the sink t,

« Of all the cuts (S, T) we could find, what Is the
smallest (max) flow (S, T) we will find?

56

Min Cut - Example (8)

Capacity of cut =5

57

Spanning Tree in a Graph

Vertex = router Spanning tree

Edge = link between routers - Connects all the vertices
- No cycles

58

Spanning Tree Algorithm

ST(i: vertex)
mark i;
for each j adjacent to i do
If | Is unmarked then
Add {i,j} to T;
ST();
end{ST}

Main

T ;= empty set;
ST(1);
end{Main}

59

Example Step 16

{1,2} {2,7} {7,5} {5,4} {4,3} {5,6}

ST(1)

60

Minimum Spanning Trees

Given an undirected graph G=(V,E), find a
graph G'=(V, E’) such that:
— E’ Is a subset of E

- |[El=1V]-1 G’ is a minimum
— G’ Is connected spanning tree.

— IS minimal
2 Cur
(u,v)eE'
Applications: wiring a house, power grids,

Internet connections

61

Find the MST

62

Two Different Approaches

Prim’s Algorithm
Looks familiar!

Kruskals’s Algorithm
Completely different!

63

Prim’s algorithm

Idea: Grow a tree by adding an edge from the
*known” vertices to the “unknown” vertices.
Pick the edge with the smallest weight.

(===

known

64

Find MST using 4 | 3 10
Prim’s

N

) &
N

V |Kwn |Distance |path | ° 8 /
vl
V2

I..A

v3 Order Declared Known:
v4 Vi,

VS
(¢}
v/

65

Kruskal’s MST Algorithm

ldea: Grow a forest out of edges that do not
create a cycle. Pick an edge with the
smallest weight.

G=(V,E)

™

(=

66

Kruskal's Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
. empty MST
o all vertices marked unconnected
 all edges unmarked
2. While there are still unmarked edges
a. Pick the lowest cost edge (u,Vv) and mark it

b. Ifuand v are not already connected, add (u,Vv) to the MST
and mark u and v as connected to each other

Doesn’t it sound familiar? 67

Example of Kruskal 8,9

X(Zi} m\} {\”i{k@%} hﬁ} {&7\}1@ {RQ{\Q
1 1 2 2 3 3 3 4

