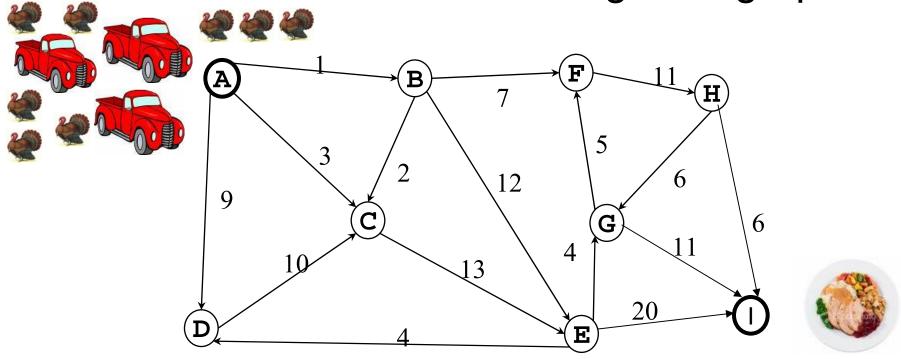
CSE 326: Data Structures Network Flow

James Fogarty
Autumn 2007

Network Flows

- Given a weighted, directed graph G=(V,E)
- Treat the edge weights as capacities
- How much can we flow through the graph?



Network flow: definitions

- Define special source s and sink t vertices
- Define a flow as a function on edges:
 - Capacity: $f(v,w) \le c(v,w)$
 - Conservation: $\sum_{v \in V} f(u, v) = 0$ for all u except source, sink
 - Value of a flow: $|f| = \sum_{v} f(s, v)$
 - Saturated edge: when f(v,w) = c(v,w)

Network flow: definitions

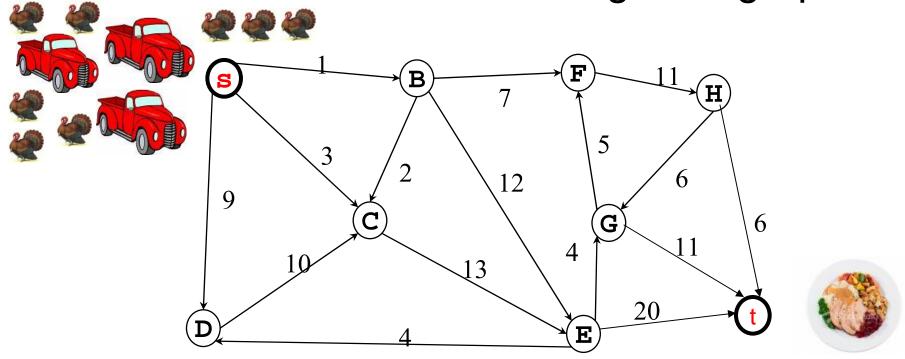
Capacity: you can't overload an edge

 Conservation: Flow entering any vertex must equal flow leaving that vertex

 We want to maximize the value of a flow, subject to the above constraints

Network Flows

- Given a weighted, directed graph G=(V,E)
- Treat the edge weights as capacities
- How much can we flow through the graph?



A Good Idea that Doesn't Work

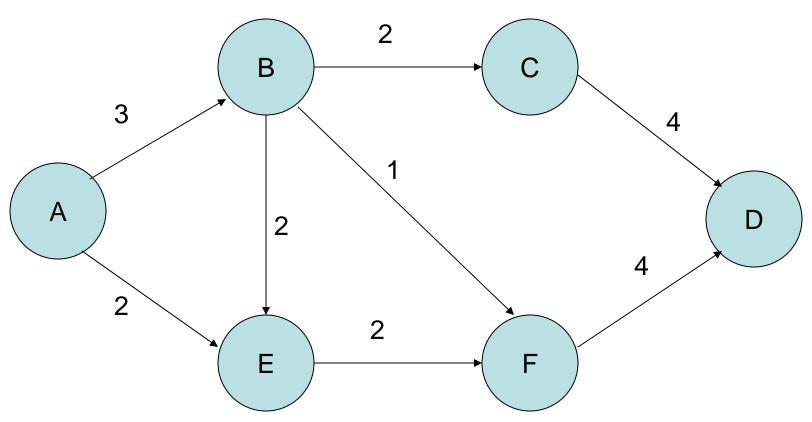
- Start flow at 0
- "While there's room for more flow, push more flow across the network!"
 - While there's some path from s to t, none of whose edges are saturated
 - Push more flow along the path until some edge is saturated
 - Called an "augmenting path"

How do we know there's still room?

- Construct a residual graph:
 - Same vertices
 - Edge weights are the "leftover" capacity on the edges
 - If there is a path s→t at all, then there is still room

Example (1)

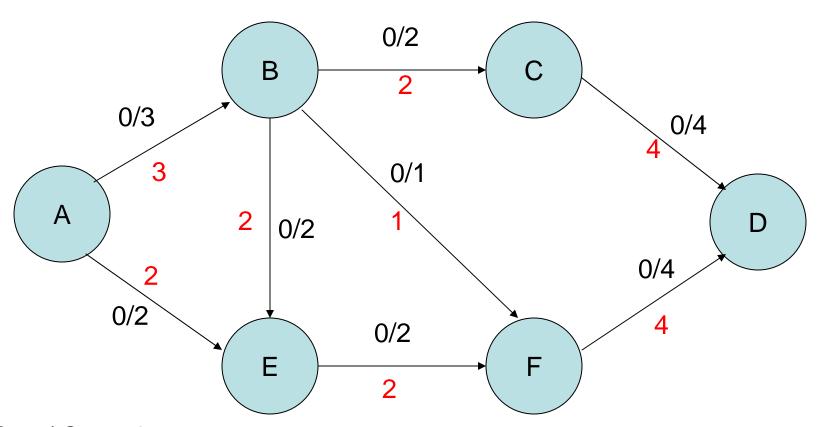
Initial graph – no flow



Flow / Capacity

Example (2)

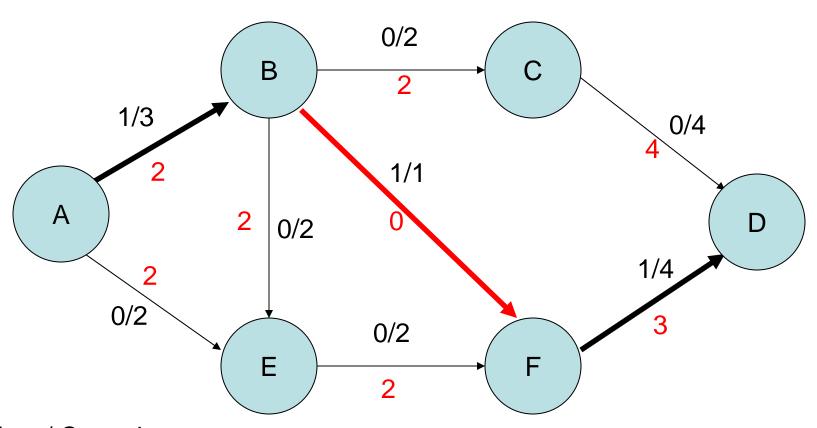
Include the residual capacities



Flow / Capacity Residual Capacity

Example (3)

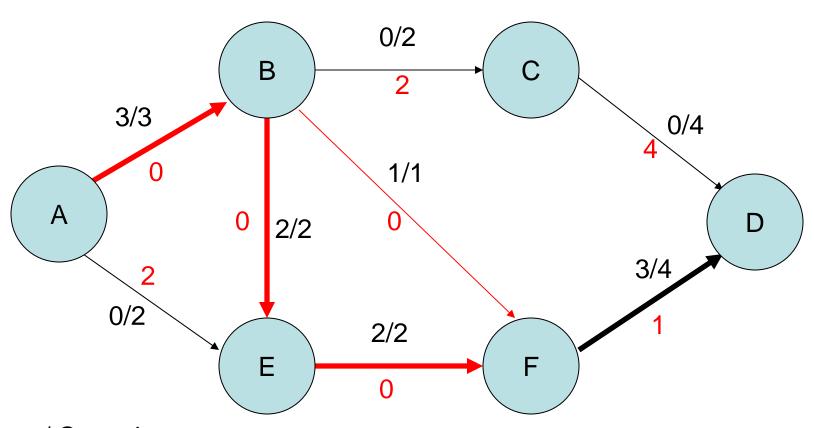
Augment along ABFD by 1 unit (which saturates BF)



Flow / Capacity
Residual Capacity

Example (4)

Augment along ABEFD (which saturates BE and EF)



Flow / Capacity
Residual Capacity

Now what?

- There's more capacity in the network...
- ...but there's no more augmenting paths

Network flow: definitions

- Define special source s and sink t vertices
- Define a flow as a function on edges:
 - Capacity: $f(v,w) \le c(v,w)$
 - Skew symmetry: f(v, w) = -f(w, v)
 - Conservation: $\sum_{v \in V} f(u, v) = 0$ for all u except source, sink
 - Value of a flow: $|f| = \sum_{v} f(s, v)$
 - Saturated edge: when f(v,w) = c(v,w)

Network flow: definitions

- Capacity: you can't overload an edge
- Skew symmetry: sending f from u→v implies you're "sending -f", or you could "return f" from v→u
- Conservation: Flow entering any vertex must equal flow leaving that vertex
- We want to maximize the value of a flow, subject to the above constraints

Main idea: Ford-Fulkerson method

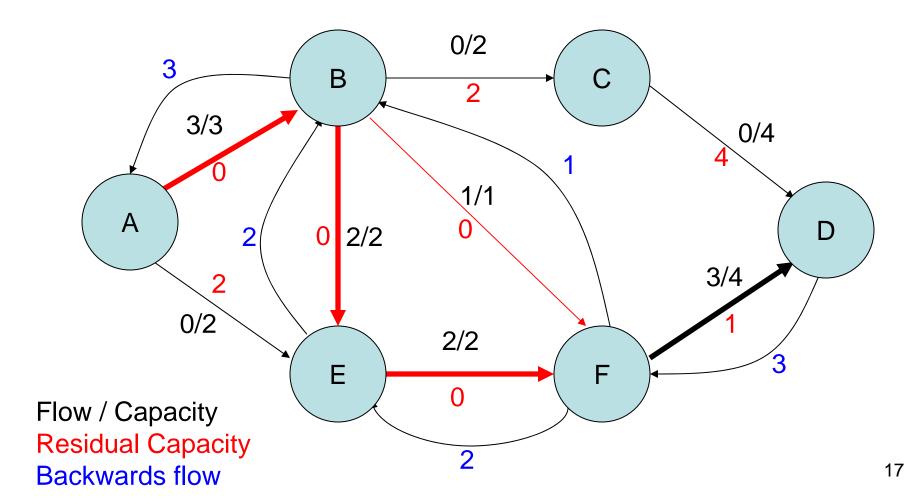
- Start flow at 0
- "While there's room for more flow, push more flow across the network!"
 - While there's some path from s to t, none of whose edges are saturated
 - Push more flow along the path until some edge is saturated
 - Called an "augmenting path"

How do we know there's still room?

- Construct a residual graph:
 - Same vertices
 - Edge weights are the "leftover" capacity on the edges
 - Add extra edges for backwards-capacity too!
 - If there is a path s
 t at all, then there is still room

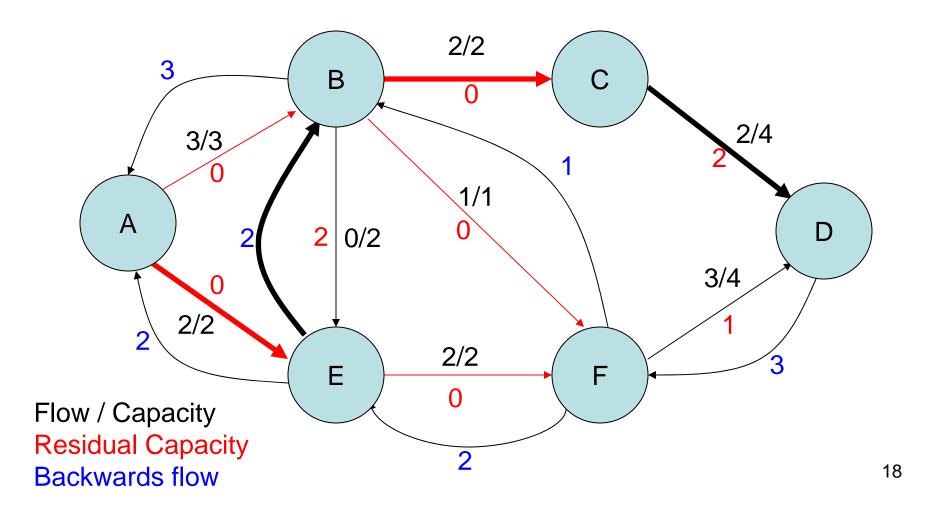
Example (5)

Add the backwards edges, to show we can "undo" some flow



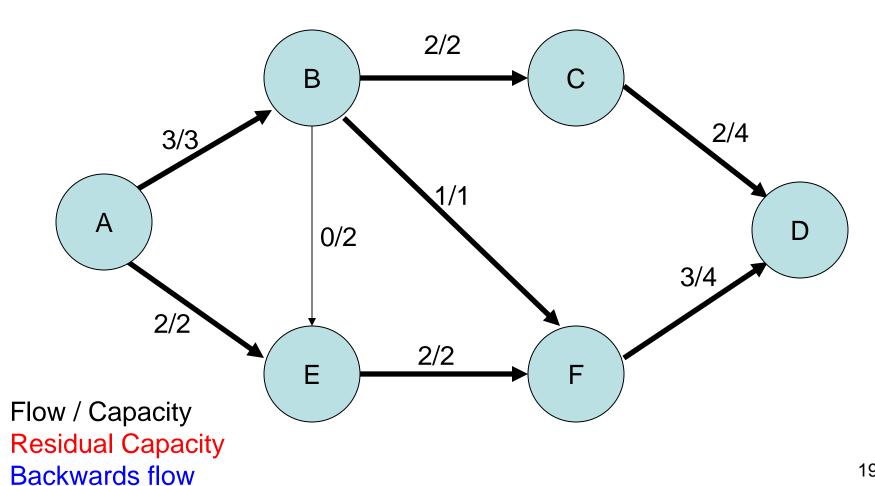
Example (6)

Augment along AEBCD (which saturates AE and EB, and empties BE)



Example (7)

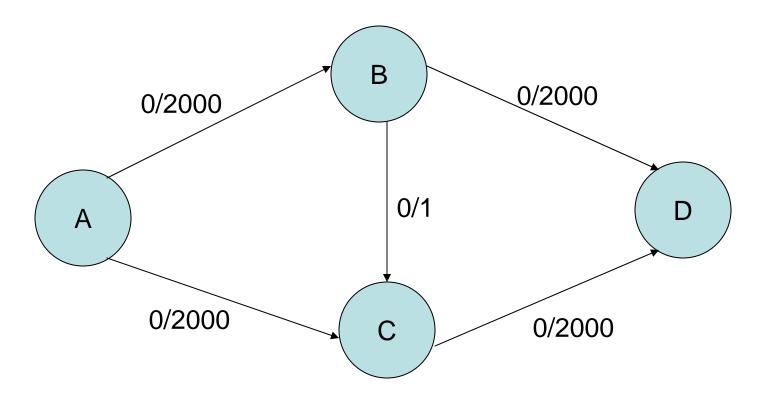
Final, maximum flow



How should we pick paths?

- Two very good heuristics (Edmonds-Karp):
 - Pick the largest-capacity path available
 - Otherwise, you'll just come back to it later...so may as well pick it up now
 - Pick the shortest augmenting path available
 - For a good example why...

Don't Mess this One Up



Augment along ABCD, then ACBD, then ABCD, then ACBD...

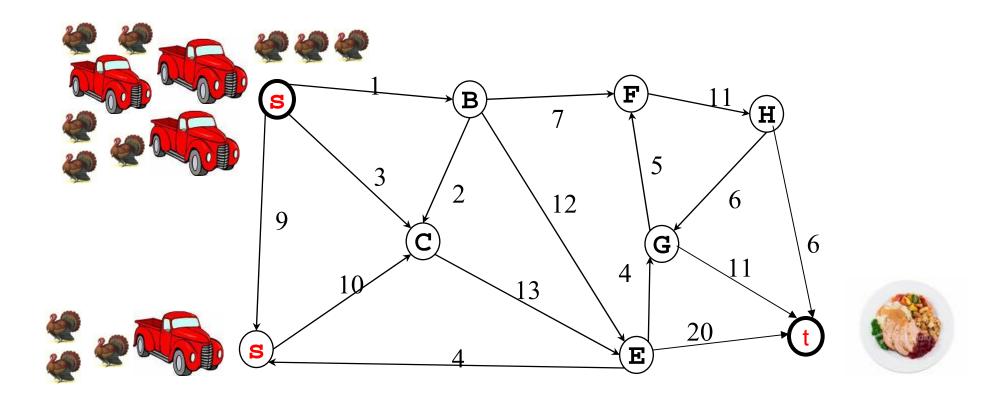
Should just augment along ACD, and ABD, and be finished

Running time?

- Each augmenting path can't get shorter...and it can't always stay the same length
 - So we have at most O(E) augmenting paths to compute for each possible length, and there are only O(V) possible lengths.
 - Each path takes O(E) time to compute
- Total time = $O(E^2V)$

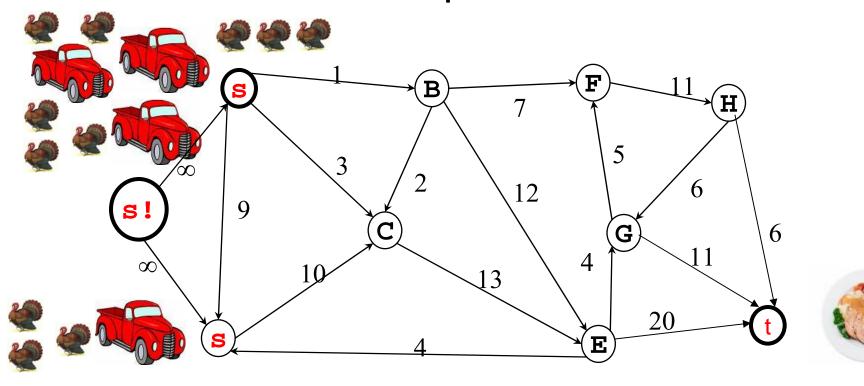
Network Flows

What about multiple turkey farms?



Network Flows

- Create a single source, with infinite capacity edges connected to sources
- Same idea for multiple sinks



One more definition on flows

 We can talk about the flow from a set of vertices to another set, instead of just from one vertex to another:

$$f(X,Y) = \sum_{x \in X} \sum_{y \in Y} f(x,y)$$

- Should be clear that f(X,X) = 0
- So the only thing that counts is flow between the two sets

Network cuts

- Intuitively, a cut separates a graph into two disconnected pieces
- Formally, a cut is a pair of sets (S, T),
 such that V = S ∪ T

$$S \cap T = \{\}$$

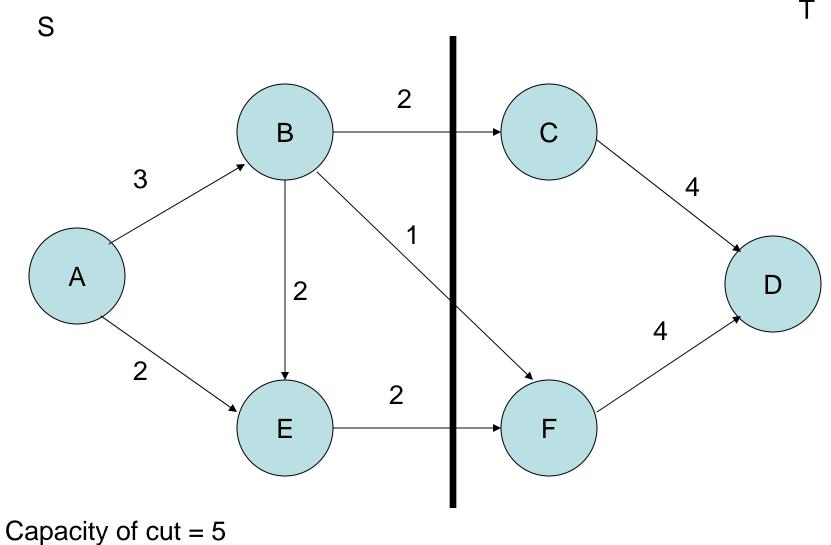
and S and T are connected subgraphs of G

Minimum cuts

 If we cut G into (S, T), where S contains the source s and T contains the sink t,

 Of all the cuts (S, T) we could find, what is the smallest (max) flow f(S, T) we will find?

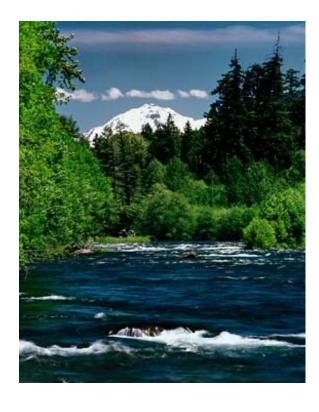
Min Cut - Example (8)



Coincidence?

- NO! Max-flow always equals Min-cut
- Why?
 - If there is a cut with capacity equal to the flow, then we have a maxflow:
 - We can't have a flow that's bigger than the capacity cutting the graph! So any cut puts a bound on the maxflow, and if we have an equality, then we must have a maximum flow.
 - If we have a maxflow, then there are no augmenting paths left
 - Or else we could augment the flow along that path, which would yield a higher total flow.
 - If there are no augmenting paths, we have a cut of capacity equal to the maxflow
 - Pick a cut (S,T) where S contains all vertices reachable in the residual graph from s, and T is everything else. Then every edge from S to T must be saturated (or else there would be a path in the residual graph). So c(S,T) = f(S,T) = f(s,t) = |f| and we're done.





GraphCut

