
1

CSE 326: Data Structures

Graph Algorithms
Graph Search

Lecture 23

CSE 326: Data Structures

Graph Algorithms
Graph Search

Lecture 23

James Fogarty
Autumn 2007

2

Problem: Large GraphsProblem: Large Graphs

It is expensive to find optimal paths
in large graphs, using BFS or
Dijkstra’s algorithm (for weighted
graphs)

How can we search large graphs
efficiently by using “commonsense”
about which direction looks most
promising?

3

ExampleExample

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S

G

53nd St

Plan a route from 9th & 50th to 3rd & 51st

4

ExampleExample

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S

G

53nd St

Plan a route from 9th & 50th to 3rd & 51st

5

Best-First SearchBest-First Search

The Manhattan distance (Δ x+ Δ y) is an
estimate of the distance to the goal

• It is a search heuristic
Best-First Search

• Order nodes in priority to minimize
estimated distance to the goal

Compare: BFS / Dijkstra
• Order nodes in priority to minimize distance

from the start

6

Best-First SearchBest-First Search

Best_First_Search(Start, Goal_test)
insert(Start, h(Start), heap);
repeat

if (empty(heap)) then return fail;
Node := deleteMin(heap);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then
insert(Child, h(Child),heap);

end
Mark Node as visited;

end

Open – Heap (priority queue)
Criteria – Smallest key (highest priority)
h(n) – heuristic estimate of distance from n to closest goal

7

ObstaclesObstacles

Best-FS eventually will expand vertex
to get back on the right track

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S G

8

Non-Optimality of Best-FirstNon-Optimality of Best-First

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S G

53nd St

Path found by
Best-first

Shortest
Path

9

Improving Best-FirstImproving Best-First

Best-first is often tremendously faster
than BFS/Dijkstra, but might stop with a
non-optimal solution
How can it be modified to be (almost)

as fast, but guaranteed to find optimal
solutions?
A* - Hart, Nilsson, Raphael 1968

• One of the first significant algorithms
developed in AI

• Widely used in many applications

10

A*A*

Exactly like Best-first search, but using a different
criteria for the priority queue:

minimize (distance from start) +
(estimated distance to goal)

priority f(n) = g(n) + h(n)
f(n) = priority of a node
g(n) = true distance from start
h(n) = heuristic distance to goal

11

Optimality of A*Optimality of A*

Suppose the estimated distance is always
less than or equal to the true distance to
the goal

• heuristic is a lower bound

Then: when the goal is removed from the
priority queue, we are guaranteed to
have found a shortest path!

12

A* in ActionA* in Action

52nd St

51st St

50th St

10
thA

ve

9
thA

ve

8
thA

ve

7
thA

ve

6
thA

ve

5
thA

ve

4
thA

ve

3
rdA

ve

2
ndA

ve

S G

53nd St

h=6+2

H=1+7

h=7+3

13

Application of A*: Speech
Recognition

Application of A*: Speech
Recognition

(Simplified) Problem:
• System hears a sequence of 3 words
• It is unsure about what it heard

– For each word, it has a set of possible
“guesses”

– E.g.: Word 1 is one of { “hi”, “high”, “I” }
• What is the most likely sentence it heard?

14

Speech Recognition as Shortest
Path

Speech Recognition as Shortest
Path

Convert to a shortest-path problem:
• Utterance is a “layered” DAG
• Begins with a special dummy “start” node
• Next: A layer of nodes for each word position, one

node for each word choice
• Edges between every node in layer i to every node

in layer i+1
– Cost of an edge is smaller if the pair of words frequently

occur together in real speech
+ Technically: - log probability of co-occurrence

• Finally: a dummy “end” node
• Find shortest path from start to end node

15

W1
1

W1
1W3

1

W4
1

W2
1

W1
2

W2
2

W1
3

W2
3

W3
3

W4
3

16

Summary: Graph SearchSummary: Graph Search

Depth First
• Little memory required
• Might find non-optimal path

Breadth First
• Much memory required
• Always finds optimal path

Iterative Depth-First Search
• Repeated depth-first searches, little memory required

Dijskstra’s Short Path Algorithm
• Like BFS for weighted graphs

Best First
• Can visit fewer nodes
• Might find non-optimal path

A*
• Can visit fewer nodes than BFS or Dijkstra
• Optimal if heuristic estimate is a lower-bound

17

Dynamic ProgrammingDynamic Programming

Algorithmic technique that
systematically records the answers to
sub-problems in a table and re-uses
those recorded results (rather than
re-computing them).

Simple Example: Calculating the Nth
Fibonacci number.

Fib(N) = Fib(N-1) + Fib(N-2)

18

Floyd-WarshallFloyd-Warshall

for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ((M[i][k]+ M[k][j]) < M[i][j])

M[i][j] = M[i][k]+ M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest paths for all
pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

19

0----e

40---d

1-0--c

31-20-b

--4-20a

edcba

b

c

d e

a

-4

2
-2

1

31

4

Initial state of the
matrix:

M[i][j] = min(M[i][j], M[i][k]+ M[k][j])

20

0----e
40---d
1-0--c
-11-20-b
0-4020a
edcba

b

c

d e

a

-4

2
-2

1

31

4

Floyd-Warshall -
for All-pairs
shortest path

Final Matrix
Contents

