CSE 326: Data Structures

Graph Algorithms Graph Search

Lecture 23

James Fogarty
Autumn 2007

Problem: Large Graphs

It is expensive to find optimal paths in large graphs, using BFS or Dijkstra's algorithm (for weighted graphs)
\square How can we search large graphs efficiently by using "commonsense" about which direction looks most promising?

Example

Plan a route from $9^{\text {th }} \& 50^{\text {th }}$ to $3^{\text {rd }} \& 51^{\text {st }}$

Example

Plan a route from $9^{\text {th }} \& 50^{\text {th }}$ to $3^{\text {rd }} \& 51^{\text {st }}$

Best-First Search

The Manhattan distance $(\Delta \mathrm{x}+\Delta \mathrm{y})$ is an estimate of the distance to the goal

- It is a search heuristic
\square Best-First Search
- Order nodes in priority to minimize estimated distance to the goal
\square Compare: BFS / Dijkstra
- Order nodes in priority to minimize distance from the start

Best-First Search

Open - Heap (priority queue)
Criteria - Smallest key (highest priority)
$h(n)$ - heuristic estimate of distance from n to closest goal

```
Best_First_Search( Start, Goal_test)
    insert(Start, h(Start), heap);
    repeat
        if (empty(heap)) then return fail;
    Node := deleteMin(heap);
    if (Goal_test(Node)) then return Node;
    for each Child of node do
        if (Child not already visited) then
                insert(Child, h(Child),heap);
    end
    Mark Node as visited;
end
```


Obstacles

Best-FS eventually will expand vertex to get back on the right track

Non-Optimality of Best-First

Improving Best-First

\square Best-first is often tremendously faster than BFS/Dijkstra, but might stop with a non-optimal solution
\square How can it be modified to be (almost) as fast, but guaranteed to find optimal solutions?
$\square A^{*}$ - Hart, Nilsson, Raphael 1968

- One of the first significant algorithms developed in AI
- Widely used in many applications

A*

Exactly like Best-first search, but using a different criteria for the priority queue:
minimize (distance from start) + (estimated distance to goal)
priority $f(n)=g(n)+h(n)$
$f(n)=$ priority of a node
$g(n)=$ true distance from start
$h(n)=$ heuristic distance to goal

Optimality of A* *

Suppose the estimated distance is always less than or equal to the true distance to the goal

- heuristic is a lower bound

Then: when the goal is removed from the priority queue, we are guaranteed to have found a shortest path!

A* in Action

Application of A*: Speech Recognition

(Simplified) Problem:

- System hears a sequence of 3 words
- It is unsure about what it heard
- For each word, it has a set of possible "guesses"
- E.g.: Word 1 is one of \{ "hi", "high", "I" \}
-What is the most likely sentence it heard?

Speech Recognition as Shortest Path

Convert to a shortest-path problem:

- Utterance is a "layered" DAG
- Begins with a special dummy "start" node
- Next: A layer of nodes for each word position, one node for each word choice
- Edges between every node in layer i to every node in layer i+1
- Cost of an edge is smaller if the pair of words frequently occur together in real speech
+ Technically: - log probability of co-occurrence
- Finally: a dummy "end" node
- Find shortest path from start to end node

Summary: Graph Search

Depth First

- Little memory required
- Might find non-optimal path

Breadth First

- Much memory required
- Always finds optimal path

Iterative Depth-First Search

- Repeated depth-first searches, little memory required

Dijskstra's Short Path Algorithm

- Like BFS for weighted graphs

Best First

- Can visit fewer nodes
- Might find non-optimal path

A*

- Can visit fewer nodes than BFS or Dijkstra
- Optimal if heuristic estimate is a lower-bound

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and re-uses those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number.
$\operatorname{Fib}(\mathrm{N})=\operatorname{Fib}(\mathrm{N}-1)+\operatorname{Fib}(\mathrm{N}-2)$

Floyd-Warshall

for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int $\mathbf{j}=1$; $\mathbf{j}=<\mathrm{V}$; $\mathbf{j + +}$)
if ((M[i][k]+ M[k][j]) < M[i][j])
M[i][j] = M[i][k]+ M[k][j]

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices $1 . . \mathrm{k}$ as intermediate vertices

Initial state of the matrix:

$M[i][j]=\min (M[i][j], M[i][k]+M[k][j])$

Floyd-Warshall for All-pairs shortest path

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

Final Matrix
Contents

