CSE 326: Data Structures Graph Algorithms Graph Search

Lecture 23

James Fogarty Autumn 2007

Problem: Large Graphs

- It is expensive to find optimal paths in large graphs, using BFS or Dijkstra's algorithm (for weighted graphs)
- How can we search large graphs efficiently by using "commonsense" about which direction looks most promising?

Example

Plan a route from 9th & 50th to 3rd & 51st

Example

Plan a route from 9th & 50th to 3rd & 51st

Best-First Search

The Manhattan distance $(\Delta x + \Delta y)$ is an estimate of the distance to the goal

- It is a search heuristic
- Best-First Search
 - Order nodes in priority to minimize estimated distance to the goal
- Compare: BFS / Dijkstra
 - Order nodes in priority to minimize distance from the start

Best-First Search

Open – Heap (priority queue) Criteria – Smallest key (highest priority) h(n) – heuristic estimate of distance from n to closest goal

```
Best_First_Search( Start, Goal_test)
insert(Start, h(Start), heap);
repeat
if (empty(heap)) then return fail;
Node := deleteMin(heap);
if (Goal_test(Node)) then return Node;
for each Child of node do
if (Child not already visited) then
insert(Child, h(Child),heap);
end
Mark Node as visited;
```

Obstacles

Best-FS eventually will expand vertex to get back on the right track

Non-Optimality of Best-First

Improving Best-First

- Best-first is often tremendously faster than BFS/Dijkstra, but might stop with a non-optimal solution
- How can it be modified to be (almost) as fast, but guaranteed to find optimal solutions?
- □A* Hart, Nilsson, Raphael 1968
 - One of the first significant algorithms developed in AI
 - Widely used in many applications

Exactly like Best-first search, but using a different criteria for the priority queue:

minimize (distance from start) + (estimated distance to goal)

priority f(n) = g(n) + h(n) f(n) = priority of a node g(n) = true distance from starth(n) = heuristic distance to goal

Optimality of A*

Suppose the estimated distance is *always* less than or equal to the true distance to the goal

• heuristic is a lower bound

Then: when the goal is removed from the priority queue, we are guaranteed to have found a shortest path!

A* in Action

Application of A*: Speech Recognition

(Simplified) Problem:

- System hears a sequence of 3 words
- It is unsure about what it heard
 - For each word, it has a set of possible "guesses"
 - E.g.: Word 1 is one of { "hi", "high", "I" }
- What is the most likely sentence it heard?

Speech Recognition as Shortest Path

Convert to a shortest-path problem:

- Utterance is a "layered" DAG
- Begins with a special dummy "start" node
- Next: A layer of nodes for each word position, one node for each word choice
- Edges between every node in layer i to every node in layer i+1
 - Cost of an edge is smaller if the pair of words frequently occur together in real speech

+ Technically: - log probability of co-occurrence

- Finally: a dummy "end" node
- Find shortest path from start to end node

Summary: Graph Search

Depth First

- Little memory required
- Might find non-optimal path

Breadth First

- Much memory required
- Always finds optimal path

Iterative Depth-First Search

- Repeated depth-first searches, little memory required Dijskstra's Short Path Algorithm
 - Like BFS for weighted graphs

Best First

- Can visit fewer nodes
- Might find non-optimal path

A*

- Can visit fewer nodes than BFS or Dijkstra
- Optimal if heuristic estimate is a lower-bound

Dynamic Programming

Algorithmic technique that systematically <u>records</u> the answers to sub-problems in a table and <u>re-uses</u> those recorded results (rather than re-computing them).

Simple Example: Calculating the Nth Fibonacci number. Fib(N) = Fib(N-1) + Fib(N-2)

Floyd-Warshall

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

	а	b	С	d	е
а	0	2	-	-4	-
b	-	0	-2	1	3
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

M[i][j] = min(M[i][j], M[i][k] + M[k][j])

Floyd-Warshall for All-pairs shortest path

	а	b	С	d	е
а	0	2	0	-4	0
b	-	0	-2	1	-1
С	-	-	0	-	1
d	-	-	-	0	4
е	-	-	-	-	0

Final Matrix Contents