
CSE 326: Data Structures
Graph Traversals

James Fogarty
Autumn 2007

2

Graph Connectivity
Undirected graphs are connected if there is a path between

any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

3

Graph Traversals
Breadth-first search (and depth-first search) work for

arbitrary (directed or undirected) graphs - not just
mazes!
Must mark visited vertices. Why?

So you do not go into an infinite loop! It’s not a tree.
Either can be used to determine connectivity:

Is there a path between two given vertices?
Is the graph (weakly/strongly) connected?

Which one:
Uses a queue?
Uses a stack?
Always finds the shortest path (for unweighted graphs)?

4

The Shortest Path Problem
Given a graph G, edge costs ci,j, and vertices s
and t in G, find the shortest path from s to t.

For a path p = v0 v1 v2 … vk

unweighted length of path p = k (a.k.a. length)

weighted length of path p = ∑i=0..k-1 ci,i+1 (a.k.a cost)

Path length equals path cost when ?

5

Single Source Shortest Paths
(SSSP)

Given a graph G, edge costs ci,j, and vertex
s, find the shortest paths from s to all
vertices in G.

Is this harder or easier than the previous problem?

6

All Pairs Shortest Paths (APSP)
Given a graph G and edge costs ci,j, find the
shortest paths between all pairs of vertices
in G.

Is this harder or easier than SSSP?

Could we use SSSP as a subroutine to solve this?

7

Depth-First Graph Search

DFS(Start, Goal_test)
push(Start, Open);
repeat

if (empty(Open)) then return fail;
Node := pop(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then push(Child, Open);
Mark Node as visited;

end

Open – Stack

Criteria – Pop

8

Breadth-First Graph Search

BFS(Start, Goal_test)
enqueue(Start, Open);
repeat

if (empty(Open)) then return fail;
Node := dequeue(Open);
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then enqueue(Child, Open);
Mark Node as visited;

end

Open – Queue

Criteria – Dequeue (FIFO)

9

Comparison: DFS versus BFS
Depth-first search

Does not always find shortest paths
Must be careful to mark visited vertices, or you
could go into an infinite loop if there is a cycle

Breadth-first search
Always finds shortest paths – optimal solutions
Marking visited nodes can improve efficiency, but
even without doing so search is guaranteed to
terminate

Is BFS always preferable?

10

DFS Space Requirements

Assume:
Longest path in graph is length d
Highest number of out-edges is k

DFS stack grows at most to size dk
For k=10, d=15, size is 150

11

BFS Space Requirements

Assume
Distance from start to a goal is d
Highest number of out edges is k BFS

Queue could grow to size kd

For k=10, d=15, size is
1,000,000,000,000,000

12

Conclusion

For large graphs, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed d.
If we knew the distance from the start to the

goal in advance, we can just not add any
children to stack after level d

But what if we don’t know d in advance?

13

Iterative-Deepening DFS (I)
Bounded_DFS(Start, Goal_test, Limit)

Start.dist = 0;
push(Start, Open);
repeat

if (empty(Open)) then return fail;
Node := pop(Open);
if (Goal_test(Node)) then return Node;
if (Node.dist ≥Limit) then return fail;
for each Child of node do

if (Child not already i-visited) then
Child.dist := Node.dist + 1;
push(Child, Open);

Mark Node as i-visited;
end

14

Iterative-Deepening DFS (II)
IDFS_Search(Start, Goal_test)

i := 1;
repeat

answer := Bounded_DFS(Start, Goal_test, i);
if (answer != fail) then return answer;
i := i+1;

end

15

Analysis of IDFS

Work performed with limit < actual
distance to G is wasted – but the
wasted work is usually small compared
to amount of work done during the last
iteration

1

()
d

i d

i

k O k
=

=∑ Ignore low order
terms!

Same time complexity as BFS

Same space complexity as (bounded) DFS

16

Saving the Path

Our pseudocode returns the goal node
found, but not the path to it

How can we remember the path?
Add a field to each node, that points to the

previous node along the path
Follow pointers from goal back to start to

recover path

17

Example

Seattle

San Francisco
Dallas

Salt Lake City

18

Example (Unweighted Graph)

Seattle

San Francisco
Dallas

Salt Lake City

19

Example (Unweighted Graph)

Seattle

San Francisco
Dallas

Salt Lake City

20

Graph Search, Saving Path
Search(Start, Goal_test, Criteria)

insert(Start, Open);
repeat

if (empty(Open)) then return fail;
select Node from Open using Criteria;
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then
Child.previous := Node;
Insert(Child, Open);

Mark Node as visited;
end

21

Weighted SSSP:
The Quest For Food

Vending Machine in EE1

ALLEN HUB

Delfino’s

Ben & Jerry’s
Neelam’sCedars

Coke Closet

Home

Schultzy’s

Parent’s Home

Café Allegro

10The Ave

U Village

350

375

40

25

35
15

25

15,356

35

285
75 70 365

350

Can we calculate shortest distance to all nodes from Allen Center?

22

Weighted SSSP:
The Quest For Food

Vending Machine in EE1

ALLEN HUB

Delfino’s

Ben & Jerry’s
Neelam’sCedars

Coke Closet

Home

Schultzy’s

Parent’s Home

Café Allegro

10The Ave

U Village

5

375

40

25

35
15

25

15,356

35

285
75 70 365

350

Can we calculate shortest distance to all nodes from Allen Center?

23

Edsger Wybe Dijkstra
(1930-2002)

• Invented concepts of structured programming, synchronization,
weakest precondition, and "semaphores" for controlling computer
processes. The Oxford English Dictionary cites his use of the
words "vector" and "stack" in a computing context.

• Believed programming should be taught without computers
• 1972 Turing Award
• “In their capacity as a tool, computers will be but a ripple on the

surface of our culture. In their capacity as intellectual challenge,
they are without precedent in the cultural history of mankind.”

24

General Graph Search Algorithm

Search(Start, Goal_test, Criteria)
insert(Start, Open);
repeat

if (empty(Open)) then return fail;
select Node from Open using Criteria;
if (Goal_test(Node)) then return Node;
for each Child of node do

if (Child not already visited) then Insert(Child, Open);
Mark Node as visited;

end

Open – some data structure (e.g., stack, queue, heap)

Criteria – some method for removing an element from Open

25

Shortest Path for Weighted
Graphs

Given a graph G = (V, E) with edge
costs c(e), and a vertex s ∈ V, find the
shortest (lowest cost) path from s to
every vertex in V

Assume: only positive edge costs

26

Dijkstra’s Algorithm for
Single Source Shortest Path

Similar to breadth-first search, but uses a
heap instead of a queue:
Always select (expand) the vertex that has a

lowest-cost path to the start vertex
Correctly handles the case where the

lowest-cost (shortest) path to a vertex is
not the one with fewest edges

