CSE 326: Data Structures Graphs

James Fogarty
Autumn 2007

Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects
Graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$
- Set of vertices:

$$
V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
$$

- Set of edges:
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each $\mathbf{e}_{\mathbf{i}}$ connects two vertices ($\mathbf{v}_{\mathbf{i} 1}, \mathbf{v}_{\mathbf{i} 2}$)

$$
\begin{aligned}
V= & \{\text { Han, Leia, Luke }\} \\
E= & \{(\text { Luke, Leia) }, \\
& (\text { Han, Leia) } \\
& (\text { Leia, Han })\}
\end{aligned}
$$

Examples of Graphs

- The web
- Vertices are webpages
- Each edge is a link from one page to another
- Call graph of a program
- Vertices are subroutines
- Edges are calls and returns
- Social networks
- Vertices are people
- Edges connect friends

Graph Definitions

In directed graphs, edges have a direction:

In undirected graphs, they don't (are two-way):

\mathbf{v} is adjacent to \mathbf{u} if $(\mathbf{u}, \mathbf{v}) \underset{\in}{\text { Leia }} \mathbf{E}$

Weighted Graphs

Each edge has an associated weight or cost.

Kingston $\bigcirc \quad 30$ Edmonds

Paths and Cycles

- A path is a list of vertices $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, v_{n}\right\}$ such that $\left(\mathbf{v}_{\mathbf{i}}, \mathbf{v}_{\mathbf{i}+1}\right) \in \mathbf{E}$ for all $\mathbf{0} \leq \mathbf{i}<\mathbf{n}$.
- A cycle is a path that begins and ends at the same node.

- $p=\{$ Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle\} 6

Path Length and Cost

- Path length: the number of edges in the path
- Path cost: the sum of the costs of each edge

length $(p)=5$

$$
\operatorname{cost}(p)=11.5 \quad 7
$$

More Definitions: Simple Paths and Cycles

A simple path repeats no vertices (except that the first can also be the last):
p = \{Seattle, Salt Lake City, San Francisco, Dallas\}
p = \{Seattle, Salt Lake City, Dallas, San Francisco, Seattle\}

A cycle is a path that starts and ends at the same node:
$p=\{$ Seattle, Salt Lake City, Dallas, San Francisco, Seattle $\}$
p = \{Seattle, Salt Lake City, Seattle, San Francisco, Seattle\}
A simple cycle is a cycle that is also a simple path (in undirected graphs, no edge can be repeated)

Trees as Graphs

- Every tree is a graph with some restrictions:
-the tree is directed
-there are no cycles (directed or undirected)
-there is a directed
path from the root to
every node

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

$$
\{\text { Tree }\} \subset\{D A G\} \subset\{G r a p h\}
$$

Rep 1: Adjacency Matrix

A $|\mathbf{V}| \times \mathbf{x} \mid$ array in which an element (\mathbf{u}, \mathbf{v}) is true if and only if there is an edge from \mathbf{u} to \mathbf{v}

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Rep 2: Adjacency List

A $|\mathbf{V}|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtimes:

Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

Some Applications: Moving Around Washington

What's the shortest way to get from Seattle to Pullman? Edge labels:

Distance

Some Applications: Moving Around Washington

What's the fastest way to get from Seattle to Pullman? Edge labels:

Distance, speed limit

Some Applications: Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Some Applications:

Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?
How about $4^{\text {th }}$ and Seneca?

This is a partial ordering, for sorting we had a total ordering

Application: Topological Sort

Given a directed graph, $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, output all the vertices in \mathbf{V} such that no vertex is output before any other vertex with an edge to it.

Minimize and
Is the output unique?
DO a topo sort

Topological Sort: Take One

1. Label each vertex with its in-degree (\# of inbound edges)
2. While there are vertices remaining:
a. Choose a vertex vof in-degree zero; output V
b. Reduce the in-degree of all vertices adjacent to V
c. Remove v from the list of vertices

Runtime:

void Graph::topsort()\{

Vertex v, w;
labelEachVertexWithItsIn-degree();
for (int counter=0; counter < NUM_VERTICES; counter++) \{
v = findNewVertexOfDegreeZero();
Time?
v.topologicalNum = counter;
for each w adjacent to v
w.indegree--; Time?
\}
\}
What's the bottleneck?

O(depends)

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree zero vertices
3. While Q not empty
a. $\quad v=Q$.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero Q.enqueue(u)

Note: could use a stack, list, set, box, ... instead of a queue
Runtime:
void Graph: :topsort()\{
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w; labelEachVertexWithItsIn-degree();

```
q.makeEmpty();
for each vertex v
```

intialize the queue
if (v.indegree == 0)
q.enqueue(v);
while (!q.isEmpty())\{
v = q.dequeue();
v.topologicalNum = ++counter;
for each w adjacent to v
if (--w.indegree == 0)
q.enqueue(w);
\}
insert new
eligible
vertices
\}
Runtime: $\quad \mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Graph Connectivity

Undirected graphs are connected if there is a path between any two vertices

Directed graphs are strongly connected if there is a path from any one vertex to any other

Directed graphs are weakly connected if there is a path between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
- Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
- Is there a path between two given vertices?
- Is the graph (weakly) connected?
- Which one:
- Uses a queue?
- Uses a stack?
- Always finds the shortest path (for unweighted graphs)?

