
CSE 326: Data Structures
Graphs

James Fogarty
Autumn 2007

2

Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing
relationships between
objects
Graph G = (V,E)
– Set of vertices:
V = {v1,v2,…,vn}

– Set of edges:
E = {e1,e2,…,em}
where each ei connects two
vertices (vi1,vi2)

Han

Leia

Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia),

(Han, Leia),
(Leia, Han)}

3

Examples of Graphs

• The web
– Vertices are webpages
– Each edge is a link from one page to another

• Call graph of a program
– Vertices are subroutines
– Edges are calls and returns

• Social networks
– Vertices are people
– Edges connect friends

4

Graph Definitions
In directed graphs, edges have a direction:

In undirected graphs, they don’t (are two-way):

v is adjacent to u if (u,v) ∈ E

Han

Leia

Luke

Han

Leia

Luke

5

Weighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Each edge has an associated weight or cost.

6

Paths and Cycles
• A path is a list of vertices {v1, v2, …, vn} such

that (vi, vi+1) ∈ E for all 0 ≤ i < n.
• A cycle is a path that begins and ends at the

same node.

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

• p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}

7

Path Length and Cost
• Path length: the number of edges in the path
• Path cost: the sum of the costs of each edge

Seattle

San Francisco
Dallas

Chicago

Salt Lake City

3.5

2 2

2.5

3

2
2.5

2.5

length(p) = 5 cost(p) = 11.5

8

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
also be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that is also a simple path (in
undirected graphs, no edge can be repeated)

9

Trees as Graphs

• Every tree is a graph
with some restrictions:

–the tree is directed
–there are no cycles

(directed or
undirected)

–there is a directed
path from the root to
every node

A

B

D E

C

F

HG

10

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program call-
graph is a DAG, then all
procedure calls can be in-
lined

{Tree} ⊂ {DAG} ⊂ {Graph}

11

Rep 1: Adjacency Matrix

A |V| x |V| array in which an element
(u,v) is true if and only if there is an
edge from u to v

Han

Leia

Luke

Han Luke Leia
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

12

Rep 2: Adjacency List

A |V|-ary list (array) in which each entry
stores a list (linked list) of all adjacent
vertices

Han

Leia

Luke
Han

Luke

Leia

Space requirements?

Runtimes:
Iterate over vertices?
Iterate over edges?
Iterate edges adj. to vertex?
Existence of edge?

13

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

Distance

14

Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Distance, speed limit

15

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

16

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

How about 4th and Seneca?

17

Application: Topological Sort
Given a directed graph, G = (V,E), output all

the vertices in V such that no vertex is output
before any other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

This is a partial ordering, for sorting we had a total ordering

Minimize and
DO a topo sort

18

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output

v
b. Reduce the in-degree of all vertices adjacent

to v
c. Remove v from the list of vertices

Runtime:

19

void Graph::topsort(){
Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;
for each w adjacent to v

w.indegree--;
}

}

Time?

Time?

What’s the bottleneck?

Time?

O(depends)

20

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree

zero vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
box, … instead of a queue

21

void Graph::topsort(){
Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
labelEachVertexWithItsIn-degree();

q.makeEmpty();
for each vertex v

if (v.indegree == 0)
q.enqueue(v);

while (!q.isEmpty()){
v = q.dequeue();
v.topologicalNum = ++counter;
for each w adjacent to v

if (--w.indegree == 0)
q.enqueue(w);

}
}

intialize the
queue

get a vertex with
indegree 0

insert new
eligible
vertices

Runtime: O(|V| + |E|)

22

Graph Connectivity
Undirected graphs are connected if there is a path between

any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

23

Graph Traversals
• Breadth-first search (and depth-first search) work

for arbitrary (directed or undirected) graphs - not
just mazes!
– Must mark visited vertices so you do not go into an

infinite loop!
• Either can be used to determine connectivity:

– Is there a path between two given vertices?
– Is the graph (weakly) connected?

• Which one:
– Uses a queue?
– Uses a stack?
– Always finds the shortest path (for unweighted graphs)?

