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Features of Sorting Algorithms

• In-place
– Sorted items occupy the same space as the 

original items. (No copying required, only O(1) 
extra space if any.)

• Stable
– Items in input with the same value end up in 

the same order as when they began.
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How fast can we sort?

• Heapsort, Mergesort, and Quicksort all run 
in O(N log N) best case running time 

• Can we do any better?
• No, if the basic action is a comparison.
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Sorting Model
• Recall our basic assumption: we can only 

compare two elements at a time
– we can only reduce the possible solution space by 

half each time we make a comparison
• Suppose you are given N elements

– Assume no duplicates
• How many possible orderings can you get?

– Example: a, b, c  (N = 3)
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Permutations

• How many possible orderings can you get?
– Example: a, b, c  (N = 3)
– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)   
– 6 orderings = 3•2•1 = 3!   (ie, “3 factorial”)
– All the possible permutations of a set of 3 elements

• For N elements
– N choices for the first position, (N-1) choices for the 

second position, …, (2) choices, 1 choice
– N(N-1)(N-2)L(2)(1)= N! possible orderings
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Decision Tree

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

The leaves contain all the possible orderings of a, b, c
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Decision Trees

• A Decision Tree is a Binary Tree such that:
– Each node = a set of orderings

• ie, the remaining solution space

– Each edge = 1 comparison
– Each leaf = 1 unique ordering
– How many leaves for N distinct elements?

• N!, ie, a leaf for each possible ordering

• Only 1 leaf has the ordering that is the 
desired correctly sorted arrangement



9

Decision Tree Example

a < b < c,  b < c < a,
c < a < b,  a < c < b,
b < a < c,  c < b < a 

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c 
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c 

c < b < a

b < c < a b < a < c 

a < b a > b

a > ca < c

b < c b > c

b < c b > c 

c < a c > a

possible orders

actual order
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Decision Trees and Sorting

• Every sorting algorithm corresponds to a 
decision tree
– Finds correct leaf by choosing edges to follow

• ie, by making comparisons

– Each decision reduces the possible solution space 
by one half

• Run time is ≥ maximum no. of comparisons
– maximum number of comparisons is the length of 

the longest path in the decision tree, i.e. the height 
of the tree
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Lower bound on Height
• A binary tree of height h has at most how many

leaves?

• The decision tree has how many leaves:

• A binary tree with L leaves has height at least:

• So the decision tree has height:

hL 2≤

!NL=

Lh 2log≥

)!(log2 Nh ≥
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log(N!) is Ω(NlogN)
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Ω(N log N)

• Run time of any comparison-based 
sorting algorithm is Ω(N log N) 

• Can we do better if we don’t use 
comparisons? 
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BucketSort (aka BinSort)
If all values to be sorted are known to be 
between 1 and K, create an array count of size 
K, increment counts while traversing the input, 
and finally output the result.

Example K=5.   Input = (5,1,3,4,3,2,1,1,5,4,5)

5
4
3
2
1
count array

Running time to sort n items?
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BucketSort Complexity: O(n+K)

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

• Case 3: K is constant but large (e.g. 232)
– ???
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Fixing impracticality: RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be 

anything

• Idea: BucketSort on each digit, 
least significant to most significant 
(lsd to msd)



17

67
123
38
3

721
9

537
478

Bucket sort 
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10 
digits for simplicity of demonstration.  
Larger bucket counts should be used 
in an actual implementation.

Radix Sort Example (1st pass)

721
3

123
537
67

478
38
9

After 1st pass
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Bucket sort 
by 10’s 
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example (2nd pass)

721
3

123
537
67

478
38
9

After 1st pass After 2nd pass
3
9

721
123
537
38
67

478
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Bucket sort 
by 100’s 
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example (3rd pass)

After 2nd pass
3
9

721
123
537
38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.
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RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

9876543210

BucketSort on lsd:

9876543210

BucketSort on next-higher digit:

9876543210

BucketSort on msd:

Your Turn
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Radixsort: Complexity
• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
– RadixSort only good for large number of elements with relatively 

small values
– Hard on the cache compared to MergeSort/QuickSort
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Summary of sorting

• Sorting choices:
– O(N2) – Bubblesort, Insertion Sort
– O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice, but O(N2)

worst case. Needs extra storage for recursion. Not 
stable.

– O(N) – Radix Sort: fast and stable. Not 
comparison based. Not in-place.


