
CSE 326: Data Structures
Sorting

James Fogarty
Autumn 2007

2

From Midterm Post-Mortem vs.
Historical Average for this Course

0

5

10

15

20

25

30

35

40

3

Features of Sorting Algorithms

• In-place
– Sorted items occupy the same space as the

original items. (No copying required, only O(1)
extra space if any.)

• Stable
– Items in input with the same value end up in

the same order as when they began.

4

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all run
in O(N log N) best case running time

• Can we do any better?
• No, if the basic action is a comparison.

5

Sorting Model
• Recall our basic assumption: we can only

compare two elements at a time
– we can only reduce the possible solution space by

half each time we make a comparison
• Suppose you are given N elements

– Assume no duplicates
• How many possible orderings can you get?

– Example: a, b, c (N = 3)

6

Permutations

• How many possible orderings can you get?
– Example: a, b, c (N = 3)
– (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
– 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)
– All the possible permutations of a set of 3 elements

• For N elements
– N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice
– N(N-1)(N-2)L(2)(1)= N! possible orderings

7

Decision Tree

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

8

Decision Trees

• A Decision Tree is a Binary Tree such that:
– Each node = a set of orderings

• ie, the remaining solution space

– Each edge = 1 comparison
– Each leaf = 1 unique ordering
– How many leaves for N distinct elements?

• N!, ie, a leaf for each possible ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

9

Decision Tree Example

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

10

Decision Trees and Sorting

• Every sorting algorithm corresponds to a
decision tree
– Finds correct leaf by choosing edges to follow

• ie, by making comparisons

– Each decision reduces the possible solution space
by one half

• Run time is ≥ maximum no. of comparisons
– maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

11

Lower bound on Height
• A binary tree of height h has at most how many

leaves?

• The decision tree has how many leaves:

• A binary tree with L leaves has height at least:

• So the decision tree has height:

hL 2≤

!NL=

Lh 2log≥

)!(log2 Nh ≥

12

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log
)1()2()2()1(log)!log(

NN

NNNNN

NN

NNNN

NNN
NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=
⋅−⋅−⋅=

L

L

L

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

13

Ω(N log N)

• Run time of any comparison-based
sorting algorithm is Ω(N log N)

• Can we do better if we don’t use
comparisons?

14

BucketSort (aka BinSort)
If all values to be sorted are known to be
between 1 and K, create an array count of size
K, increment counts while traversing the input,
and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

5
4
3
2
1
count array

Running time to sort n items?

15

BucketSort Complexity: O(n+K)

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

• Case 3: K is constant but large (e.g. 232)
– ???

16

Fixing impracticality: RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be

anything

• Idea: BucketSort on each digit,
least significant to most significant
(lsd to msd)

17

67
123
38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

Radix Sort Example (1st pass)

721
3

123
537
67

478
38
9

After 1st pass

18

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example (2nd pass)

721
3

123
537
67

478
38
9

After 1st pass After 2nd pass
3
9

721
123
537
38
67

478

19

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example (3rd pass)

After 2nd pass
3
9

721
123
537
38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

20

RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

9876543210

BucketSort on lsd:

9876543210

BucketSort on next-higher digit:

9876543210

BucketSort on msd:

Your Turn

21

Radixsort: Complexity
• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
– RadixSort only good for large number of elements with relatively

small values
– Hard on the cache compared to MergeSort/QuickSort

22

Summary of sorting

• Sorting choices:
– O(N2) – Bubblesort, Insertion Sort
– O(N log N) average case running time:

• Heapsort: In-place, not stable.
• Mergesort: O(N) extra space, stable.
• Quicksort: claimed fastest in practice, but O(N2)

worst case. Needs extra storage for recursion. Not
stable.

– O(N) – Radix Sort: fast and stable. Not
comparison based. Not in-place.

