CSE 326: Data Structures
Sorting

James Fogarty
Autumn 2007

From Midterm Post-Mortem vs.
Historical Average for this Course

Features of Sorting Algorithms

 In-place
— Sorted items occupy the same space as the
original items. (No copying required, only O(1)
extra space if any.)

e Stable

— Items in input with the same value end up In
the same order as when they began.

How fast can we sort?

 Heapsort, Mergesort, and Quicksort all run
INn O(N log N) best case running time

 Can we do any better?
* No, If the basic action is a comparison.

Sorting Model

» Recall our basic assumption: we can only
compare two elements at a time

— we can only reduce the possible solution space by
half each time we make a comparison

e Suppose you are given N elements
— Assume no duplicates

 How many possible orderings can you get?
— Example: a, b, c (N=3)

Permutations

« How many possible orderings can you get?
— Example: a, b, c (N=3)
—(abc),(ach),(bac),(bca),(cab),(cba)
— 6 orderings = 3.2.1 = 3! (ie, “3 factorial”)
— All the possible permutations of a set of 3 elements
 For N elements

— N choices for the first position, (N-1) choices for the
second position, ..., (2) choices, 1 choice

— N(N-1)(N-2)---(2)(1)= N! possible orderings

Decision Tree

a<b<c, b<c<a,
c<a<b, a<c<hb,
b<a<c, c<b<a

—a<b

a<bh<c
c<a<b
a<c<b

a<c‘:/\:':1>c

a<b<c c<a<bh
a<c<b

b<ﬁ///\\3ic

a<b<c a<c<b

;:B*

b<c<a
b<a<c
c<b<a

b<g//\\5>c
b<c<a c<b<a
b<a<c

c<ﬁ///\\£ja

b<c<a b<a<c

The leaves contain all the possible orderings of a, b, ¢

Decision Trees

A Decision Tree is a Binary Tree such that:

— Each node = a set of orderings
* e, the remaining solution space

— Each edge = 1 comparison
— Each leaf = 1 unique ordering
— How many leaves for N distinct elements?
* N!, ie, a leaf for each possible ordering
 Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

Decision Tree Example

a<bh<c
c<a<b
a<c<b

a<b<c b<c<a,
c<a<bh, a<c<b,
b<a<c, c<b<a

e possible orders

a<&//\\3>c

a<bh<c
a<c<b

b<E///\\Qic

c<a<b

a<b<c a<c<b

Decision Trees and Sorting

« Every sorting algorithm corresponds to a
decision tree
— Finds correct leaf by choosing edges to follow
 ie, by making comparisons
— Each decision reduces the possible solution space
by one half

 Run time IS > maximum no. of comparisons

— maximum number of comparisons is the length of
the longest path in the decision tree, i.e. the height
of the tree

10

Lower bound on Height

A binary tree of height h has at most how many

leaves?
L< 2"

The decision tree has how many leaves:
L= N!
A binary tree with L leaves has height at |east:
h>log, L

So the decision tree has height:
h>log,(N!)

11

log(N!D) 1s Q(NlogN)

log(N!) =log(N - (N -1)- (N —=2)---(2)- (1))

=log N +log(N —-1) +log(N —2) +---+log 2 +logl
first N/2 terms
— N

o 2logN +log(N —1)+log(N —2)+---+Iog?

o

oo}
terms is > logN/2 > |Og —
e T
2 2
N

N N
zz(logN —IogZ):?Iog N Y
=Q(NlogN)

12

Q(N log N)

 Run time of any comparison-based
sorting algorithm is (N log N)

« Can we do better if we don’t use
comparisons?

13

BucketSort (aka BinSort)

If all values to be sorted are known to be
between 1 and K, create an array count of size
K, iIncrement counts while traversing the input,
and finally output the result.

Example K=5. Input=(5,1,3,4,3,2,1,1,5,4,5)

count alray

1 #

Running time to sort n items?

14

- WN

BucketSort Complexity: O(n+K)

e Case 1: KIs a constant
— BinSort is linear time

e Case 2: K is variable
— Not simply linear time

e Case 3: K is constant but large (e.g. 239)
—?27?

15

Fixing impracticality: RadixSort

 Radix = “The base of a number system”

— We'll use 10 for convenience, but could be
anything

e |dea: BucketSort on each digit,
least significant to most significant
(Isd to msd)

16

Radix Sort Example (15t pass)

Input data

478
537
9
721
3
38
123
67

Bucket sort
by 1's digit

After 15t pass

721
3

123

1 2 3 4) 6 7 8
721 3 537 | 478
123 67| 38

[©

537
67
478
38

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

9

17

Radix Sort Example (2" pass)

After 18t pass

721
3
123
537
67
478
38
9

Bucket sort

by 10’s

digit
0 2 3 4 6 7
03 721 | 537 67 | 478

09

123

38

3

9
721
123
537
38
67
478

After 2"d pass

18

Radix Sort Example (3" pass)

After 2"d pass

3

9
721
123
537
38
67
478

Bucket sort

by 100’s

digit
O|1|2]| 3| 4|5 7
003 | 123 478 | 537 721
009
038
067

Invariant: after k passes the low order k digits are sorted.

3

9
38
67
123
478
537
721

After 3 pass

19

Your Turn

BucketSort on Isd: *

IN

RadixSort

put:126, 328, 636, 341, 416, 131, 328

0 1 4 5 6
BucketSort on next-higher digit:
0 1 4 5 6
BucketSort on msd:
0 1 4 5 6 .

=

Radixsort: Complexity

How many passes?
How much work per pass?

Total time?

Conclusion?

In practice

— RadixSort only good for large number of elements with relatively
small values

— Hard on the cache compared to MergeSort/QuickSort

21

Summary of sorting

e Sorting choices:
— O(N?) — Bubblesort, Insertion Sort

— O(N log N) average case running time:
« Heapsort: In-place, not stable.
 Mergesort: O(N) extra space, stable.

« Quicksort: claimed fastest in practice, but O(N?)
worst case. Needs extra storage for recursion. Not
stable.

— O(N) — Radix Sort: fast and stable. Not
comparison based. Not in-place.

22

