
CSE 326: Data Structures
Disjoint Union/Find

James Fogarty
Autumn 2007

2

Weighted Union

• Weighted Union
– Always point the smaller tree to the root of the

larger tree

1

2

3

45

6

7
W-Union(1,7)

2 41

3

A Bad Case

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n
Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1) n steps!!

4

Example Again

1 2 3 n

1

2 3 n

Union(1,2)

1

2

3

n
Union(2,3)

Union(n-1,n)

…

… :
:

1

2

3 n

…

Find(1) constant time
…

5

Analysis of Weighted Union

• With weighted union an up-tree of height h has
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1
– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

6

Analysis of Weighted Union

• Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

• n > 2h

• log2 n > h
• Find(x) in tree T takes O(log n) time.
• Can we do better?

7

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

8

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n

9

Elegant Array Implementation

1

2

3

45

6

72 41

0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight

10

Weighted Union

W-Union(i,j : index){
//i and j are roots//

wi := weight[i];
wj := weight[j];
if wi < wj then

up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi + wj;

}

11

Path Compression
• On a Find operation point all the nodes on the

search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

12

Self-Adjustment Works

PC-Find(x)

x

13

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

14

Path Compression Find

PC-Find(i : index) {
r := i;
while up[r] ≠ 0 do //find root//

r := up[r];
if i ≠ r then //compress path//

k := up[i];
while k ≠ r do

up[i] := r;
i := k;
k := up[k]

return(r)
}

15

Interlude: A Really Slow
Function

Ackermann’s function is a really big function
A(x, y) with inverse α(x, y) which is really small

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of
atoms in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

16

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3 (log log log 16 = 1)
log* 65536 = log* 2222 = 4 (log log log log 65536 =

1)
log* 265536 = …………… = 5

Take this: α(m,n) grows even slower than log* n !!

17

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n
elements is O(m log* n)
– Log * n < 7 for all reasonable n. Essentially constant

time per operation!
• Using “ranked union” gives an even better

bound theoretically.

18

Sorting: The Big Picture
Given n comparable elements in an array,
sort them in an increasing order.

Simple
algorithms:

O(n2)

Fancier
algorithms:
O(n log n)

Comparison
lower bound:
Ω(n log n)

Specialized
algorithms:

O(n)

Handling
huge data

sets

Insertion sort
Selection sort
Bubble sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

19

Insertion Sort: Idea

• At the kth step, put the kth input element in
the correct place among the first k
elements

• Result: After the kth step, the first k
elements are sorted.

Runtime:
worst case :
best case :
average case :

20

Selection Sort: idea

• Find the smallest element, put it 1st

• Find the next smallest element, put it 2nd

• Find the next smallest, put it 3rd

• And so on …

21

Selection Sort: Code
void SelectionSort (Array a[0..n-1]) {

for (i=0, i<n; ++i) {
j = Find index of smallest entry in a[i..n-1]
Swap(a[i],a[j])

}

}

Runtime:
worst case :
best case :
average case :

22

Try it out: Selection sort

• 31, 16, 54, 4, 2, 17, 6

23

Example

24

Example

25

Try it out: Insertion sort

• 31, 16, 54, 4, 2, 17, 6

26

HeapSort:
Using Priority Queue ADT (heap)

756

27
18

801
35

13
23 44

87

8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

27

Try it out: Heap sort

• 31, 16, 54, 4, 2, 17, 6

