CSE 326: Data Structures
Disjoint Union/Find

James Fogarty
Autumn 2007

Weighted Union

* Weighted Union

— Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

A Bad Case

{ Union(2,3)
/. " .

@))
" /,. Union(n-1,n)

}

2 Find(1) n steps!!

o

Union(1,2)

Example Again

© @ ® - O
Union(1,2)
@ @ "
{ Union(2,3)
v @ _
Union(n-1,n)

{.}\ Find(1) constant time

Analysis of Weighted Union

* With weighted union an up-tree of height h has
weight at least 2".

* Proof by induction
— Basis: h = 0. The up-tree has one node, 2°=1

— Inductive step: Assume true for all h’ < h.

T W(T) > W(Tp) > 2

Minimum weight T Weighfted Indﬁction
up-tree of height h hf Union hypothesis
formed by W(T) > 21+ 2h-1 = 2n

weighted unions

Analysis of Weighted Union

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

n>2h

log, n > h

FInd(x) in tree T takes O(log n) time.
Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

ccccs e s

n/4 Weighted Unions

SR RLRL

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

TR

\ Find

If there are n = 2k nodes then the longest
path from leaf to root has length k.

Elegant Array Implementation

R
.

N

1O (W
~N B

up
weight

N O |-

Welighted Union

W-Uniton(i,jJ : 1ndex){
//1 and j are roots//
wi = weight][i];
wj = weight][j];

iIT wi < wj then

upli] = 3J;

weight[j] = wi + wj;
else

uplyl :=1;

werght[i] = wi + wj;

10

Path Compression

 On a Find operation point all the nodes on the

search path directly to the root.

%o e
* P

T,

O

QA
I4494444

Self-Adjustment Works

=

AN AN AN AN AN AN

PC-Find(x)

Student Activity

Draw the result of Find(e):

13

Path Compression Find

PC-Find(r : 1ndex) {
r .= 1;
while up[r] = 0 do //find root//
r -= up|[r];
if 1 = r then //compress path//
k = up[1];
whille K # r do
up[i] := r;
1 = K;
k = up[k]
return(r)

}

14

Interlude: A Really Slow
Function

Ackermann’s function is a really big function
A(X, y) with inverse o(X, y) which is really small

How fast does a(X, y) grow?

a(X, y) = 4 for x far larger than the number of
atoms in the universe (2300)

o Shows up In:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

15

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.logr2=1
0g* 4 =log*22=2
og* 16 = log* 22 = 3 (log log log 16 = 1)
0g* 65536 = log* 222% = 4 (log log log log 65536 =

1)
log* 265936 = | =5

Take this: a(m,n) grows even slower than log* n 1s

Disjoint Union / Find
with Weighted Union and PC

e Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

 Time complexity for m > n operations on n
elements is O(m log* n)

— Log * n < 7 for all reasonable n. Essentially constant
time per operation!

e Using “ranked union” gives an even better
bound theoretically.

17

Sorting: The BIQ Picture

Given n comparable elements in an array,
sort them in an increasing order.

Simple Fancier Comparison Specialized Handling
algorithms: algorithms: lower bound: algorithms: huge data
O(n?) O(n log n) Q(n log n) O(n) sets
\ N / /
Insertion sort Heap sort Bucket sort External
Selection sort Merge sort Radix sort sorting

Bubble sort Quick sort

Shell sort

18

Insertion Sort: ldea

e At the k" step, put the k" input element in

the correct place among the first k
elements

« Result: After the k' step, the first k
elements are sorted.

Runtime:

Worst case
best case
average case

19

-1NC
1IN0

-1NC

t
t
t

Selection Sort: iIdea

ne smallest element, put it 15
ne next smallest element, put it 2"

ne next smallest, put it 37

And soon ...

20

Selection Sort: Code

void SelectionSort (Array af[0..n-1]) {
for (i=0, i<n; ++i) {
J = Find 1ndex of smallest entry i1n af[i1..n-1]}

Swap(a[i1].afil)

Runtime:
WOrst case
best case
average case 21

Try It out: Selection sort

e 31,16, 54,4,2,17,6

22

R
7 1012123181516 |17 14
K4
8 10112123118 | 15|16 |17 | 14
R
8 10112118 (2311516 |17 14
R
8 1012181152316 |17 14
R
8 1011211511823 |16 |17 | 14
R
8 101121151816 | 23|17 14
R
8 1012151161823 [17| 14

23

Example

¥ X
819 |10(12(15|16 (18|17 (23|14
KX
8|9 |10[12|15|16 (17|18 |23|14
K X
8|9 |10(12(15|16 |17 |18 |14 |23
¥ X
8|9 |10(12|15|16 |17 (14|18 |23
F X
8|9 |1012|15|16 14|17 |18 |23
¥ X
8|9 1012|1514 |16|17|18 |23
8|9 10121415 |16 (17|18 |23

24

Try It out: Insertion sort

e 31,16, 54,4,2,17,6

25

HeapSort:
Using Priority Queue ADT (heap)

87
23 44 756

13 18
801 57

25

AR
(@8 13 18 23 27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:
26

Try It out: Heap sort

e 31,16, 54,4,2,17,6

27

