CSE 326: Data Structures Disjoint Union/Find

James Fogarty
Autumn 2007

Weighted Union

- Weighted Union
- Always point the smaller tree to the root of the larger tree

A Bad Case

(1) (2) (3) … ©

Find(1) n steps!!

Example Again

(1) (2) (3) …

Find(1) constant time

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least $2^{\text {h }}$.
- Proof by induction
- Basis: $\mathrm{h}=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all h' < h.

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n \geq 2^{h}$
- $\log _{2} n \geq h$
- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

Example of Worst Cast (cont')

After $\mathrm{n}-1=\mathrm{n} / 2+\mathrm{n} / 4+\ldots+1$ Weighted Unions

If there are $\mathrm{n}=2^{\mathrm{k}}$ nodes then the longest path from leaf to root has length k.

Elegant Array Implementation

	1	2	3	4	5	6		
up	0	1	0	7	7	5	0	0
weight	2		1					4

Weighted Union

```
W-Union(i,j : index){
//i and j are roots//
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi + wj;
}
```


Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Student Activity

Draw the result of Find(e):

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] f 0 do //find root//
        r := up[r];
    if i}\not=r then //compress path//
    k := up[i];
        while k f r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```


Interlude: A Really Slow Function

Ackermann's function is a really big function $\mathrm{A}(x, y)$ with inverse $\alpha(x, y)$ which is really small

How fast does $\alpha(x, y)$ grow?
$\alpha(x, y)=4$ for x far larger than the number of atoms in the universe (2^{300})
α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

A More Comprehensible Slow Function

$\log ^{*} x=$ number of times you need to compute log to bring value down to at most 1
E.g. $\log ^{\star} 2=1$
$\log ^{*} 4=\log ^{*} 2^{2}=2$
$\log ^{*} 16=\log ^{*} 2^{2^{2}}=3 \quad(\log \log \log 16=1)$
$\log ^{\star} 65536=\log ^{\star} 2^{2^{22}}=4 \quad(\log \log \log \log 65536=$
1)

$$
\log * 2^{65536}=\ldots \ldots \ldots \ldots \ldots=5
$$

Take this: $\alpha(m, n)$ grows even slower than log* $n \quad!{ }^{!} 6$

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log \mathrm{n})$.
- Time complexity for $m \geq n$ operations on n elements is $\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)$
- Log * $\mathrm{n}<7$ for all reasonable n . Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Sorting: The Big Picture

Given n comparable elements in an array, sort them in an increasing order.

Simple algorithms: $\mathrm{O}\left(n^{2}\right)$	Fancier algorithms: $\mathrm{O}(n \log n)$	Comparison lower bound: $\Omega(n \log n)$	Specialized algorithms: $\mathrm{O}(n)$	Handling huge data sets
			Bucket sort	External

Insertion Sort: Idea

- At the $k^{\text {th }}$ step, put the $k^{\text {th }}$ input element in the correct place among the first k elements
- Result: After the $k^{\text {th }}$ step, the first k elements are sorted.

Runtime:

worst case :
best case :
average case :

Selection Sort: idea

- Find the smallest element, put it $1^{\text {st }}$
- Find the next smallest element, put it $2^{\text {nd }}$
- Find the next smallest, put it $3^{\text {rd }}$
- And so on ...

Selection Sort: Code

void SelectionSort (Array a[0..n-1]) \{ for (i=0, i<n; ++i) \{
j = Find index of smallest entry in a[i..n-1] Swap(a[i],a[j])
\}
\}

Runtime:

$$
\begin{array}{ll}
\text { worst case } & : \\
\text { best case } & : \\
\text { average case } & :
\end{array}
$$

Try it out: Selection sort

- 31, 16, 54, 4, 2, 17, 6

Example

Example

Try it out: Insertion sort

- 31, 16, 54, 4, 2, 17, 6

HeapSort:

Using Priority Queue ADT (heap)

23	44	87
13	18	
	801	27

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

Try it out: Heap sort

- 31, 16, 54, 4, 2, 17, 6

