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Equivalence Relations

Relation R :

 For every pair of elements (a, b) in a set
S, a R b s either true or false.

« IfaR bistrue,thenais related to b.

An equivalence relation satisfies:

1. (Reflexive) a R a

2. (Symmetric)aRbiffb R a

3. (Transitive)aRbandb R cimpliesaR c
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A new guestion

* Which of these things are similar?

{ grapes, blackberries, plums, apples,
oranges, peaches, raspberries, lemons }

 If imes are added to this fruit salad, and are
similar to oranges, then are they similar to
grapes?

 How do you answer these questions efficiently?



Equivalence Classes

e Given a set of things...

{ grapes, blackberries, plums, apples, oranges, peaches,
raspberries, lemons, bananas }

« ...define the equivalence relation
All citrus fruit is related, all berries, all stone fruits, and THAT'S IT.

e ...partition them into related subsets

{ grapes }, { blackberries, raspberries }, { oranges, lemons },
{ plums, peaches }, { apples }, { bananas }

Everything in an equivalence class is related to each other.



Determining equivalence classes

e |dea: give every equivalence class a name
—{ oranges, limes, lemons } = “like-ORANGES”
—{ peaches, plums } = “like-PEACHES”

— Etc.

e To answer If two fruits are related:
— FIND the name of one fruit's e.c.

— FIND the name of the other fruit’s e.c.
— Are they the same name?



Building Equivalence Classes

o Start with disjoint, singleton sets:
—{ apples }, { bananas }, { peaches }, ...

e As you gain information about the relation,
UNION sets that are now related.

—{ peaches, plums }, { apples }, { bananas }, ...

e E.qg. If peaches R limes, then we get
— { peaches, plums, limes, oranges, lemons }



Disjoint Union - Find

e Maintain a set of pairwise disjoint sets.
-{3,5,7}, {4,2,8}, {9}, {1,6}

 Each set has a unigue name, one of its
members
—-{3,5,7},{4,2,8}, {9}, {1,6}




Union

 Union(x,y) — take the union of two sets
named x and y
—-{3.5,7},{4,2,8}, {9}, {1,6}
— Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},



Find

e Find(x) — return the name of the set
containing X.
-{3,5,7,1,6}, {4,2,8}, {9},
— Find(1) =5
— Find(4) = 8



Example

S S

giZ,Z,8,9,13,19} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4 Find(14) = 20 %

{%} > {5}

Eﬁ)} Union(7,20) %%}

2 o

= 12

v as1021

' {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36}

33,34,35,36)
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Cute Application

e Build a random maze by erasing edges.
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Cute Application

 Pick Start and End

Start

End
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Cute Application

 Repeatedly pick random edges to delete.

Start

End
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Desired Properties

 None of the boundary Is deleted

e Every cell is reachable from every other
cell.

 There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.
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A Cycle

Start

-




Start

A Good Solution

End
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A Hidden Tree

Start

End




Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Stat 1 | 2 | 3| 4|5 |6

13 |14 | 15| 16 | 17 | 18

19 |1 20 | 21 | 22 | 23 | 24

25 | 26 | 27 | 28 | 29 | 30

31 |32 | 33|34 | 35| 36 End
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Basic Algorithm

e S = set of sets of connected cells
« E =set of edges
« Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (X,y) and remove from E
u := Find(x);
v = Find(y);
If u = vthen
Union(u,v)
else
add (x,y) to Maze
All remaining members of E together with Maze form the maze
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Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3| 4| 5| 6 {4}
— {5}
7 8 9|10 11 12 6}
{10}
13|14 |15 16 | 17 | 18 11.17)
19 | 20 | 21 | 22 23| 24 {12}
{14,20,26,27}
25 | 26 27128 |29 30 {15,16,21}
31 |32 33 34 35 36 ENd

[22,23,24,29,30,32
33,34,35,36) 20



Example

S S

giZ,Z,8,9,13,19} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4 Find(14) = 20 %

{%} > {5}

Eﬁ)} Union(7,20) %%}

2 o

= 12

v as1021

' {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36}

33,34,35,36)
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Start

Pick (19,20)

Example

13
19

25

N

14
20
26

10

15
21

16

11

17

12

18

22

27

28

31

32

33

34

23
29

35 36 ENnd

24
30

S

{1,2,7,8,9,13,19
14,20,26,27}

3}

14}

{5}

{6}

{10}

11,17}

{12}
{15,16,21}

[22,23,24,29,39,32
33,34,35,36) 22



Example at the End

Start 1 2 ‘ 3

7
13
19

25

8
14
20
26

9

10

15
21

16

11

17

22

27

28

31

32

33

34

23
29

35 36 ENnd

12
18
24
30

S
{1,2,3,4,5,6,7,... 36}

—— Maze
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Implementing the DS ADT

N elements,
Total Cost of: m finds, < n-1 unions

e Target complexity: O(m+n)
l.e. O(1) amortized

* O(1) worst-case for find as well as union
would be great, but...

Known result: find and union cannot
both be done Iin worst-case O(1) time



Implementing the DS ADT

e Observation: trees let us find many elements
given one root...

e |dea: If we reverse the pointers (make them
point up from child to parent), we can find a
single root from many elements...

* |dea: Use one tree for each equivalence class.

The name of the class Is the tree root.
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Up-Tree for DU/F

Initial state ‘ ‘ ‘ ‘ ‘ ‘ ‘

Intermediate ‘ ‘
State ; '/
Roots are the names of each set. 4
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Find Operation

* Find(x) follow x to the root and return the

./X

Find(6) = 7
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Union Operation

e Union(l,)) - assuming | and | roots, point i to
].

Union(1,7)

2 .
.
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Simple Implementation

« Array of indices

Up[X] = 0 means
12 3 45 617 X IS a root.
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Union

Unton(up[] : integer array, X,y - iInteger) : {
//precondition: x and y are roots//

Up[x] =y

by

Constant Time!
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Exercise

e Design Find operator
— Recursive version
— |terative version

Find(up[] : integer array, X : iInteger) : integer {
//precondition: X 1s In the range 1 to size//
?27?7?

}
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A Bad Case

{ Union(2,3)
/. " .

@) )
" /,. Union(n-1,n)

}

2 Find(1) n steps!!

o

Union(1,2)
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Now this doesn’t look good ®

Can we do better? Yes!

1.

2.

Improve union so that find only takes ®(log n)
 Union-by-size
* Reduces complexity to ®(m log n + n)

Improve find so that it becomes even better!
. Path compression
« Reduces complexity to almost ®(m + n)
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Weighted Union

* Weighted Union

— Always point the smaller tree to the root of the
larger tree

W-Union(1,7)
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Example Again

© @ ® - O
Union(1,2)
@ @ "
{ Union(2,3)
v @ _
Union(n-1,n)

{.}\ Find(1) constant time
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Analysis of Weighted Union

* With weighted union an up-tree of height h has
weight at least 2".

* Proof by induction
— Basis: h = 0. The up-tree has one node, 2°=1

— Inductive step: Assume true for all h’ < h.

T W(T) > W(Tp) > 2

Minimum weight T Weighfted Indﬁction
up-tree of height h hf Union hypothesis
formed by W(T) > 21+ 2h-1 = 2n

weighted unions



Analysis of Weighted Union

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

n>2h

log, n > h

FInd(x) in tree T takes O(log n) time.
Can we do better?
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Worst Case for Weighted Union

n/2 Weighted Unions

ccccs e s

n/4 Weighted Unions

SR RLRL



Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

TR

\ Find

If there are n = 2k nodes then the longest
path from leaf to root has length k.
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Elegant Array Implementation

R
.

N

1O (W
~N B

up
weight

N O |-
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Welighted Union

W-Uniton(i,jJ : 1ndex){
//1 and j are roots//
wi = weight][i];
wj = weight][j];

iIT wi < wj then

upli] = 3J;

weight[j] = wi + wj;
else

uplyl :=1;

werght[i] = wi + wj;
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Path Compression

 On a Find operation point all the nodes on the

search path directly to the root.

%o e
* P

T,




O

QA
I4494444

Self-Adjustment Works

=

AN AN AN AN AN AN

PC-Find(x)




Student Activity

Draw the result of Find(e):
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Path Compression Find

PC-Find(r : 1ndex) {
r .= 1;
while up[r] = 0 do //find root//
r -= up|[r];
if 1 = r then //compress path//
k = up[1];
whille K # r do
up[i] := r;
1 = K;
k = up[k]
return(r)

}
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Interlude: A Really Slow
Function

Ackermann’s function is a really big function
A(X, y) with inverse o(X, y) which is really small

How fast does a(X, y) grow?

a(X, y) = 4 for x far larger than the number of
atoms in the universe (2300)

o Shows up In:
— Computation Geometry (surface complexity)
— Combinatorics of sequences
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A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.logr2=1
0g* 4 =log*22=2
og* 16 = log* 22 = 3 (log log log 16 = 1)
0g* 65536 = log* 222% = 4 (log log log log 65536 =

1)
log* 265936 = | ............ =5

Take this: a(m,n) grows even slower than log* n W



Disjoint Union / Find
with Weighted Union and PC

e Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

 Time complexity for m > n operations on n
elements is O(m log* n)

— Log * n < 7 for all reasonable n. Essentially constant
time per operation!

e Using “ranked union” gives an even better
bound theoretically.
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Amortized Complexity

* For disjoint union / find with weighted
union and path compression.

— average time per operation is essentially a
constant.

— worst case time for a PC-Find is O(log n).

* An Individual operation can be costly, but
over time the average cost per operation Is
not.
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Find Solutions

Recursive

Find(up[] : integer array, X : iInteger) : iInteger {
//precondition: X 1s In the range 1 to size//

1T up[x] = O then return x

else return Find(up,up[x]);

}

lterative
Find(up[] : integer array, X : iInteger) : integer {
//precondition: X 1s In the range 1 to size//
while up[x] = O do

X 1= up[x];
return Xx;

}
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