CSE 326: Data Structures Disjoint Union/Find

James Fogarty Autumn 2007

Equivalence Relations

Relation *R*:

- For every pair of elements (a, b) in a set
 S, a R b is either true or false.
- If a *R* b is true, then a *is related* to b.

An equivalence relation satisfies:

- 1. (Reflexive) a *R* a
- 2. (Symmetric) a *R* b iff b *R* a
- 3. (Transitive) a R b and b R c implies a R c

A new question

- Which of these things are similar?
 { grapes, blackberries, plums, apples, oranges, peaches, raspberries, lemons }
- If limes are added to this fruit salad, and are similar to oranges, then are they similar to grapes?
- How do you answer these questions efficiently?

Equivalence Classes

• Given a set of things...

{ grapes, blackberries, plums, apples, oranges, peaches, raspberries, lemons, bananas }

- ...define the equivalence relation
 All citrus fruit is related, all berries, all stone fruits, and THAT'S IT.
- ...partition them into related subsets
 { grapes }, { blackberries, raspberries }, { oranges, lemons },
 { plums, peaches }, { apples }, { bananas }

Everything in an equivalence class is related to each other.

Determining equivalence classes

- Idea: give every equivalence class a name
 - { oranges, limes, lemons } = "like-ORANGES"
 - { peaches, plums } = "like-PEACHES"
 - Etc.
- To answer if two fruits are related:
 - FIND the name of one fruit's e.c.
 - FIND the name of the other fruit's e.c.
 - Are they the same name?

Building Equivalence Classes

- Start with disjoint, singleton sets:
 { apples }, { bananas }, { peaches }, ...
- As you gain information about the relation, UNION sets that are now related:
 - { peaches, plums }, { apples }, { bananas }, ...
- E.g. if peaches R limes, then we get
 { peaches, plums, limes, oranges, lemons }

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 {3,5,7}, {4,2,8}, {9}, {1,6}
- Each set has a unique name, one of its members
 - $-\{3,\underline{5},7\}, \{4,2,\underline{8}\}, \{\underline{9}\}, \{\underline{1},6\}$

Union

- Union(x,y) take the union of two sets named x and y
 - $-\{3,\underline{5},7\},\{4,2,\underline{8}\},\{\underline{9}\},\{\underline{1},6\}$
 - Union(5,1)
 - {3,<u>5</u>,7,1,6}, {4,2,<u>8</u>}, {<u>9</u>},

Find

- Find(x) return the name of the set containing x.
 - $-\{3,\underline{5},7,1,6\}, \{4,2,\underline{8}\}, \{\underline{9}\},\$
 - Find(1) = 5
 - -Find(4) = 8

Example

Cute Application

• Build a random maze by erasing edges.

Cute Application

Pick Start and End

Cute Application

• Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles no cell can reach itself by a path unless it retraces some part of the path.

A Cycle

A Good Solution

A Hidden Tree

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself. We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Start

•	1	2	3	4	5	6	
	7	8	9	10	11	12	
	13	14	15	16	17	18	
	19	20	21	22	23	24	
	25	26	27	28	29	30	
	31	32	33	34	35	36	End

Basic Algorithm

- S = set of sets of connected cells
- E = set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u \neq v then
Union(u,v)
else
add (x,y) to Maze
All remaining members of E together with Maze form the maze
```

Example Step

{22,23,24,29,30,32 33,<u>34</u>,35,36}

20

Example

Example

{22,23,24,29,39,32 33,<u>34</u>,35,36}

22

Example at the End

Implementing the DS ADT

- *n* elements, Total Cost of: *m* finds, ≤ *n*-1 unions
- Target complexity: O(m+n) *i.e.* O(1) amortized
- O(1) worst-case for find as well as union would be great, but...

Known result: find and union *cannot* both be done in worst-case O(1) time ²⁴

Implementing the DS ADT

- Observation: *trees* let us find many elements given one root...
- Idea: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...
- Idea: Use one tree for each equivalence class. The name of the class is the tree root.

Find Operation

Find(x) follow x to the root and return the root

Union Operation

Union(i,j) - assuming i and j roots, point i to j.

Simple Implementation

• Array of indices

Up[x] = 0 means x is a root.

Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```

Constant Time!

Exercise

- Design Find operator
 - Recursive version
 - Iterative version

```
Find(up[] : integer array, x : integer) : integer {
  //precondition: x is in the range 1 to size//
  ???
}
```

A Bad Case

Now this doesn't look good $\ensuremath{\mathfrak{S}}$

Can we do better? Yes!

- 1. Improve union so that *find* only takes $\Theta(\log n)$
 - Union-by-size
 - Reduces complexity to $\Theta(m \log n + n)$
- 2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to <u>almost</u> $\Theta(m + n)$

Weighted Union

- Weighted Union
 - Always point the smaller tree to the root of the larger tree

Example Again

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least 2^h.
- Proof by induction
 - Basis: h = 0. The up-tree has one node, $2^0 = 1$
 - Inductive step: Assume true for all h' < h.

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- n ≥ 2^h
- $\log_2 n \ge h$
- Find(x) in tree T takes O(log n) time.
- Can we do better?

Worst Case for Weighted Union

Example of Worst Cast (cont')

After n - 1 = n/2 + n/4 + ... + 1 Weighted Unions

Elegant Array Implementation

Weighted Union

```
W-Union(i,j : index){
//i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then
    up[i] := j;
    weight[j] := wi + wj;
else
    up[j] :=i;
    weight[i] := wi + wj;
}</pre>
```

Path Compression

• On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Draw the result of Find(e):

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] ≠ 0 do //find root//
    r := up[r];
    if i ≠ r then //compress path//
        k := up[i];
        while k ≠ r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```

Interlude: A Really Slow Function

Ackermann's function is a <u>really</u> big function A(x, y) with inverse $\alpha(x, y)$ which is <u>really</u> small

How fast does $\alpha(x, y)$ grow? $\alpha(x, y) = 4$ for x far larger than the number of atoms in the universe (2³⁰⁰)

 α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

A More Comprehensible Slow Function

log* x = number of times you need to compute log to bring value down to at most 1

E.g.
$$\log^{*} 2 = 1$$

 $\log^{*} 4 = \log^{*} 2^{2} = 2$
 $\log^{*} 16 = \log^{*} 2^{2^{2}} = 3$ (log log log 16 = 1)
 $\log^{*} 65536 = \log^{*} 2^{2^{2^{2}}} = 4$ (log log log log 65536 =
1)
 $\log^{*} 2^{65536} = \dots = 5$

Take this: $\alpha(m,n)$ grows even slower than $\log^* n$ M

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is O(1) and for a PC-Find is O(log n).
- Time complexity for m ≥ n operations on n elements is O(m log* n)
 - Log * n < 7 for all reasonable n. Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
 - average time per operation is essentially a constant.
 - worst case time for a PC-Find is O(log n).
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

Recursive

```
Find(up[] : integer array, x : integer) : integer {
  //precondition: x is in the range 1 to size//
  if up[x] = 0 then return x
  else return Find(up,up[x]);
 }
```

Iterative

```
Find(up[] : integer array, x : integer) : integer {
  //precondition: x is in the range 1 to size//
  while up[x] ≠ 0 do
    x := up[x];
  return x;
 }
```