
CSE 326: Data Structures
Disjoint Union/Find

James Fogarty
Autumn 2007

2

Equivalence Relations

Relation R :
• For every pair of elements (a, b) in a set

S, a R b is either true or false.
• If a R b is true, then a is related to b.
An equivalence relation satisfies:
1. (Reflexive) a R a
2. (Symmetric) a R b iff b R a
3. (Transitive) a R b and b R c implies a R c

3

A new question

• Which of these things are similar?
{ grapes, blackberries, plums, apples,
oranges, peaches, raspberries, lemons }

• If limes are added to this fruit salad, and are
similar to oranges, then are they similar to
grapes?

• How do you answer these questions efficiently?

4

Equivalence Classes
• Given a set of things…

{ grapes, blackberries, plums, apples, oranges, peaches,
raspberries, lemons, bananas }

• …define the equivalence relation
All citrus fruit is related, all berries, all stone fruits, and THAT’S IT.

• …partition them into related subsets
{ grapes }, { blackberries, raspberries }, { oranges, lemons },
{ plums, peaches }, { apples }, { bananas }

Everything in an equivalence class is related to each other.

5

Determining equivalence classes

• Idea: give every equivalence class a name
– { oranges, limes, lemons } = “like-ORANGES”
– { peaches, plums } = “like-PEACHES”
– Etc.

• To answer if two fruits are related:
– FIND the name of one fruit’s e.c.
– FIND the name of the other fruit’s e.c.
– Are they the same name?

6

Building Equivalence Classes

• Start with disjoint, singleton sets:
– { apples }, { bananas }, { peaches }, …

• As you gain information about the relation,
UNION sets that are now related:
– { peaches, plums }, { apples }, { bananas }, …

• E.g. if peaches R limes, then we get
– { peaches, plums, limes, oranges, lemons }

7

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its
members
– {3,5,7} , {4,2,8}, {9}, {1,6}

8

Union

• Union(x,y) – take the union of two sets
named x and y
– {3,5,7} , {4,2,8}, {9}, {1,6}
– Union(5,1)

{3,5,7,1,6}, {4,2,8}, {9},

9

Find

• Find(x) – return the name of the set
containing x.
– {3,5,7,1,6}, {4,2,8}, {9},
– Find(1) = 5
– Find(4) = 8

10

Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

11

Cute Application

• Build a random maze by erasing edges.

12

Cute Application
• Pick Start and End

Start

End

13

Cute Application

• Repeatedly pick random edges to delete.

Start

End

14

Desired Properties

• None of the boundary is deleted
• Every cell is reachable from every other

cell.
• There are no cycles – no cell can reach

itself by a path unless it retraces some
part of the path.

15

A Cycle

Start

End

16

A Good Solution

Start

End

17

A Hidden Tree

Start

End

18

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

19

Basic Algorithm
• S = set of sets of connected cells
• E = set of edges
• Maze = set of maze edges initially empty

While there is more than one set in S
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u ≠ v then

Union(u,v)
else

add (x,y) to Maze
All remaining members of E together with Maze form the maze

20

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
33,34,35,36}

Pick (8,14)

21

Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Union(7,20)

22

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
33,34,35,36}

Pick (19,20)

23

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
Maze

24

Implementing the DS ADT
• n elements,

Total Cost of: m finds, ≤ n-1 unions

• Target complexity: O(m+n)
i.e. O(1) amortized

• O(1) worst-case for find as well as union
would be great, but…
Known result: find and union cannot
both be done in worst-case O(1) time

25

Implementing the DS ADT

• Observation: trees let us find many elements
given one root…

• Idea: if we reverse the pointers (make them
point up from child to parent), we can find a
single root from many elements…

• Idea: Use one tree for each equivalence class.
The name of the class is the tree root.

26

Up-Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

27

Find Operation

• Find(x) follow x to the root and return the
root

1

2

3

45

6

7

Find(6) = 7

28

Union Operation

• Union(i,j) - assuming i and j roots, point i to
j.

1

2

3

45

6

7
Union(1,7)

29

Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

Up[x] = 0 means
x is a root.

30

Union

Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}

Constant Time!

31

Exercise
• Design Find operator

– Recursive version
– Iterative version

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
???
}

32

A Bad Case

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n
Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1) n steps!!

33

Now this doesn’t look good
Can we do better? Yes!

1. Improve union so that find only takes Θ(log n)
• Union-by-size
• Reduces complexity to Θ(m log n + n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almost Θ(m + n)

34

Weighted Union

• Weighted Union
– Always point the smaller tree to the root of the

larger tree

1

2

3

45

6

7
W-Union(1,7)

2 41

35

Example Again

1 2 3 n

1

2 3 n

Union(1,2)

1

2

3

n
Union(2,3)

Union(n-1,n)

…

… :
:

1

2

3 n

…

Find(1) constant time
…

36

Analysis of Weighted Union

• With weighted union an up-tree of height h has
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1
– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

37

Analysis of Weighted Union

• Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

• n > 2h

• log2 n > h
• Find(x) in tree T takes O(log n) time.
• Can we do better?

38

Worst Case for Weighted Union

n/2 Weighted Unions

n/4 Weighted Unions

39

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n

40

Elegant Array Implementation

1

2

3

45

6

72 41

0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
up

weight

41

Weighted Union

W-Union(i,j : index){
//i and j are roots//

wi := weight[i];
wj := weight[j];
if wi < wj then

up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi + wj;

}

42

Path Compression
• On a Find operation point all the nodes on the

search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

43

Self-Adjustment Works

PC-Find(x)

x

44

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

45

Path Compression Find

PC-Find(i : index) {
r := i;
while up[r] ≠ 0 do //find root//

r := up[r];
if i ≠ r then //compress path//

k := up[i];
while k ≠ r do

up[i] := r;
i := k;
k := up[k]

return(r)
}

46

Interlude: A Really Slow
Function

Ackermann’s function is a really big function
A(x, y) with inverse α(x, y) which is really small

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of
atoms in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

47

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3 (log log log 16 = 1)
log* 65536 = log* 2222 = 4 (log log log log 65536 =

1)
log* 265536 = …………… = 5

Take this: α(m,n) grows even slower than log* n !!

48

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n
elements is O(m log* n)
– Log * n < 7 for all reasonable n. Essentially constant

time per operation!
• Using “ranked union” gives an even better

bound theoretically.

49

Amortized Complexity

• For disjoint union / find with weighted
union and path compression.
– average time per operation is essentially a

constant.
– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but
over time the average cost per operation is
not.

50

Find Solutions

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
x := up[x];

return x;
}

Recursive

Iterative

