CSE 326: Data Structures
Disjoint Union/Find

James Fogarty
Autumn 2007

Equivalence Relations

Relation R :

 For every pair of elements (a, b) in a set
S, a R b s either true or false.

« IfaR bistrue,thenais related to b.

An equivalence relation satisfies:

1. (Reflexive) a R a

2. (Symmetric)aRbiffb R a

3. (Transitive)aRbandb R cimpliesaR c

2

A new guestion

* Which of these things are similar?

{ grapes, blackberries, plums, apples,
oranges, peaches, raspberries, lemons }

 If imes are added to this fruit salad, and are
similar to oranges, then are they similar to
grapes?

 How do you answer these questions efficiently?

Equivalence Classes

e Given a set of things...

{ grapes, blackberries, plums, apples, oranges, peaches,
raspberries, lemons, bananas }

« ...define the equivalence relation
All citrus fruit is related, all berries, all stone fruits, and THAT'S IT.

e ...partition them into related subsets

{ grapes }, { blackberries, raspberries }, { oranges, lemons },
{ plums, peaches }, { apples }, { bananas }

Everything in an equivalence class is related to each other.

Determining equivalence classes

e |dea: give every equivalence class a name
—{ oranges, limes, lemons } = “like-ORANGES”
—{ peaches, plums } = “like-PEACHES”

— Etc.

e To answer If two fruits are related:
— FIND the name of one fruit's e.c.

— FIND the name of the other fruit’s e.c.
— Are they the same name?

Building Equivalence Classes

o Start with disjoint, singleton sets:
—{ apples }, { bananas }, { peaches }, ...

e As you gain information about the relation,
UNION sets that are now related.

—{ peaches, plums }, { apples }, { bananas }, ...

e E.qg. If peaches R limes, then we get
— { peaches, plums, limes, oranges, lemons }

Disjoint Union - Find

e Maintain a set of pairwise disjoint sets.
-{3,5,7}, {4,2,8}, {9}, {1,6}

 Each set has a unigue name, one of its
members
—-{3,5,7},{4,2,8}, {9}, {1,6}

Union

 Union(x,y) — take the union of two sets
named x and y
—-{3.5,7},{4,2,8}, {9}, {1,6}
— Union(5,1)
{3,5,7,1,6}, {4,2,8}, {9},

Find

e Find(x) — return the name of the set
containing X.
-{3,5,7,1,6}, {4,2,8}, {9},
— Find(1) =5
— Find(4) = 8

Example

S S

giZ,Z,8,9,13,19} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4 Find(14) = 20 %

{%} > {5}

Eﬁ)} Union(7,20) %%}

2 o

= 12

v as1021

' {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36}

33,34,35,36)
10

Cute Application

e Build a random maze by erasing edges.

11

Cute Application

 Pick Start and End

Start

End

12

Cute Application

 Repeatedly pick random edges to delete.

Start

End

13

Desired Properties

 None of the boundary Is deleted

e Every cell is reachable from every other
cell.

 There are no cycles — no cell can reach
itself by a path unless it retraces some
part of the path.

14

A Cycle

Start

-

Start

A Good Solution

End

16

A Hidden Tree

Start

End

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4},... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Stat 1 | 2 | 3| 4|5 |6

13 |14 | 15| 16 | 17 | 18

19 |1 20 | 21 | 22 | 23 | 24

25 | 26 | 27 | 28 | 29 | 30

31 |32 | 33|34 | 35| 36 End

18

Basic Algorithm

e S = set of sets of connected cells
« E =set of edges
« Maze = set of maze edges initially empty

While there is more than one setin S
pick a random edge (X,y) and remove from E
u := Find(x);
v = Find(y);
If u = vthen
Union(u,v)
else
add (x,y) to Maze
All remaining members of E together with Maze form the maze

19

Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}
Stat 1 2 | 3| 4| 5| 6 {4}
— {5}
7 8 9|10 11 12 6}
{10}
13|14 |15 16 | 17 | 18 11.17)
19 | 20 | 21 | 22 23| 24 {12}
{14,20,26,27}
25 | 26 27128 |29 30 {15,16,21}
31 |32 33 34 35 36 ENd

[22,23,24,29,30,32
33,34,35,36) 20

Example

S S

giZ,Z,8,9,13,19} ind(8) = 7 {1,2,7,8,9,13,19,14,20 26,27}
3 In =

{4 Find(14) = 20 %

{%} > {5}

Eﬁ)} Union(7,20) %%}

2 o

= 12

v as1021

' {22,23,24,29,39,32
{22,23,24,29,39,32 33,34,35,36}

33,34,35,36)
21

Start

Pick (19,20)

Example

13
19

25

N

14
20
26

10

15
21

16

11

17

12

18

22

27

28

31

32

33

34

23
29

35 36 ENnd

24
30

S

{1,2,7,8,9,13,19
14,20,26,27}

3}

14}

{5}

{6}

{10}

11,17}

{12}
{15,16,21}

[22,23,24,29,39,32
33,34,35,36) 22

Example at the End

Start 1 2 ‘ 3

7
13
19

25

8
14
20
26

9

10

15
21

16

11

17

22

27

28

31

32

33

34

23
29

35 36 ENnd

12
18
24
30

S
{1,2,3,4,5,6,7,... 36}

—— Maze

23

Implementing the DS ADT

N elements,
Total Cost of: m finds, < n-1 unions

e Target complexity: O(m+n)
l.e. O(1) amortized

* O(1) worst-case for find as well as union
would be great, but...

Known result: find and union cannot
both be done Iin worst-case O(1) time

Implementing the DS ADT

e Observation: trees let us find many elements
given one root...

e |dea: If we reverse the pointers (make them
point up from child to parent), we can find a
single root from many elements...

* |dea: Use one tree for each equivalence class.

The name of the class Is the tree root.

25

Up-Tree for DU/F

Initial state ‘ ‘ ‘ ‘ ‘ ‘ ‘

Intermediate ‘ ‘
State ; '/
Roots are the names of each set. 4

26

Find Operation

* Find(x) follow x to the root and return the

./X

Find(6) = 7

27

Union Operation

e Union(l,)) - assuming | and | roots, point i to
].

Union(1,7)

2 .
.

28

Simple Implementation

« Array of indices

Up[X] = 0 means
12 3 45 617 X IS a root.

29

Union

Unton(up[] : integer array, X,y - iInteger) : {
//precondition: x and y are roots//

Up[x] =y

by

Constant Time!

30

Exercise

e Design Find operator
— Recursive version
— |terative version

Find(up[] : integer array, X : iInteger) : integer {
//precondition: X 1s In the range 1 to size//
?27?7?

}

31

A Bad Case

{ Union(2,3)
/. " .

@))
" /,. Union(n-1,n)

}

2 Find(1) n steps!!

o

Union(1,2)

32

Now this doesn’t look good ®

Can we do better? Yes!

1.

2.

Improve union so that find only takes ®(log n)
 Union-by-size
* Reduces complexity to ®(m log n + n)

Improve find so that it becomes even better!
. Path compression
« Reduces complexity to almost ®(m + n)

33

Weighted Union

* Weighted Union

— Always point the smaller tree to the root of the
larger tree

W-Union(1,7)

34

Example Again

© @ ® - O
Union(1,2)
@ @ "
{ Union(2,3)
v @ _
Union(n-1,n)

{.}\ Find(1) constant time

35

Analysis of Weighted Union

* With weighted union an up-tree of height h has
weight at least 2".

* Proof by induction
— Basis: h = 0. The up-tree has one node, 2°=1

— Inductive step: Assume true for all h’ < h.

T W(T) > W(Tp) > 2

Minimum weight T Weighfted Indﬁction
up-tree of height h hf Union hypothesis
formed by W(T) > 21+ 2h-1 = 2n

weighted unions

Analysis of Weighted Union

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.

n>2h

log, n > h

FInd(x) in tree T takes O(log n) time.
Can we do better?

37

Worst Case for Weighted Union

n/2 Weighted Unions

ccccs e s

n/4 Weighted Unions

SR RLRL

Example of Worst Cast (cont’)

Aftern-1=n/2 + n/4 + ...+ 1 Weighted Unions

TR

\ Find

If there are n = 2k nodes then the longest
path from leaf to root has length k.

39

Elegant Array Implementation

R
.

N

1O (W
~N B

up
weight

N O |-

40

Welighted Union

W-Uniton(i,jJ : 1ndex){
//1 and j are roots//
wi = weight][i];
wj = weight][j];

iIT wi < wj then

upli] = 3J;

weight[j] = wi + wj;
else

uplyl :=1;

werght[i] = wi + wj;

41

Path Compression

 On a Find operation point all the nodes on the

search path directly to the root.

%o e
* P

T,

O

QA
I4494444

Self-Adjustment Works

=

AN AN AN AN AN AN

PC-Find(x)

Student Activity

Draw the result of Find(e):

44

Path Compression Find

PC-Find(r : 1ndex) {
r .= 1;
while up[r] = 0 do //find root//
r -= up|[r];
if 1 = r then //compress path//
k = up[1];
whille K # r do
up[i] := r;
1 = K;
k = up[k]
return(r)

}

45

Interlude: A Really Slow
Function

Ackermann’s function is a really big function
A(X, y) with inverse o(X, y) which is really small

How fast does a(X, y) grow?

a(X, y) = 4 for x far larger than the number of
atoms in the universe (2300)

o Shows up In:
— Computation Geometry (surface complexity)
— Combinatorics of sequences

46

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.logr2=1
0g* 4 =log*22=2
og* 16 = log* 22 = 3 (log log log 16 = 1)
0g* 65536 = log* 222% = 4 (log log log log 65536 =

1)
log* 265936 = | =5

Take this: a(m,n) grows even slower than log* n W

Disjoint Union / Find
with Weighted Union and PC

e Worst case time complexity for a W-Union is
O(1) and for a PC-Find is O(log n).

 Time complexity for m > n operations on n
elements is O(m log* n)

— Log * n < 7 for all reasonable n. Essentially constant
time per operation!

e Using “ranked union” gives an even better
bound theoretically.

48

Amortized Complexity

* For disjoint union / find with weighted
union and path compression.

— average time per operation is essentially a
constant.

— worst case time for a PC-Find is O(log n).

* An Individual operation can be costly, but
over time the average cost per operation Is
not.

49

Find Solutions

Recursive

Find(up[] : integer array, X : iInteger) : iInteger {
//precondition: X 1s In the range 1 to size//

1T up[x] = O then return x

else return Find(up,up[x]);

}

lterative
Find(up[] : integer array, X : iInteger) : integer {
//precondition: X 1s In the range 1 to size//
while up[x] = O do

X 1= up[x];
return Xx;

}

50

