CSE 326: Data Structures Disjoint Union/Find

James Fogarty
Autumn 2007

Equivalence Relations

Relation R :

- For every pair of elements (a, b) in a set $S, a R b$ is either true or false.
- If $\mathrm{a} R \mathrm{~b}$ is true, then a is related to b .

An equivalence relation satisfies:

1. (Reflexive) a $R \mathrm{a}$
2. (Symmetric) a R b iff $\mathrm{b} R \mathrm{a}$
3. (Transitive) a R b and b R c implies a $R \mathrm{c}$

A new question

- Which of these things are similar?
\{ grapes, blackberries, plums, apples, oranges, peaches, raspberries, lemons \}
- If limes are added to this fruit salad, and are similar to oranges, then are they similar to grapes?
- How do you answer these questions efficiently?

Equivalence Classes

- Given a set of things... \{ grapes, blackberries, plums, apples, oranges, peaches, raspberries, lemons, bananas \}
- ...define the equivalence relation All citrus fruit is related, all berries, all stone fruits, and THAT'S IT.
- ...partition them into related subsets
\{ grapes \}, \{ blackberries, raspberries \}, \{ oranges, lemons \}, \{ plums, peaches \}, \{ apples \}, \{ bananas \}

Everything in an equivalence class is related to each other.

Determining equivalence classes

- Idea: give every equivalence class a name - $\{$ oranges, limes, lemons $\}=$ "like-ORANGES"
- \{ peaches, plums \} = "like-PEACHES"
- Etc.
- To answer if two fruits are related:
- FIND the name of one fruit's e.c.
- FIND the name of the other fruit's e.c.
- Are they the same name?

Building Equivalence Classes

- Start with disjoint, singleton sets:
- \{ apples \}, \{ bananas \}, \{ peaches \}, ...
- As you gain information about the relation, UNION sets that are now related:
- \{ peaches, plums \}, \{ apples \}, \{ bananas \}, ...
- E.g. if peaches R limes, then we get
- \{ peaches, plums, limes, oranges, lemons \}

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
$-\{3, \underline{5}, 7\},\{4,2, \underline{8}\},\{9\},\{\underline{1}, 6\}$

Union

- Union (x, y) - take the union of two sets named x and y
$-\{3,5,7\},\{4,2,8\},\{9\},\{\underline{1}, 6\}$
- Union $(5,1)$

$$
\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{9\},
$$

Find

- Find(x) - return the name of the set containing x.
$-\{3, \underline{5}, 7,1,6\},\{4,2, \underline{8}\},\{\underline{9}\}$,
- Find(1) $=5$
- Find(4) $=8$

Example

S
$\{1,2, \underline{7}, 8,9,13,19\}$
$\{3\}$
$\{4\}$
$\{5\}$
$\{6\}$
$\{10\}$
$\{11, \underline{17}\}$
$\{12\}$
$\{14, \underline{20}, 26,27\}$
$\{15,16,21\}$

$\{22,23,24,29,39,32$
$33, \underline{34}, 35,36\}$

S

\{22,23,24,29,39,32
33,34,35,36\}

Cute Application

- Build a random maze by erasing edges.

Cute Application

- Pick Start and End

Cute Application

- Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.

A Cycle

A Good Solution

A Hidden Tree

Number the Cells

We have disjoint sets $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$ each cell is unto itself. We have all possible edges $E=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ edges total.

Start	1	2	3	4	5	6
7	8	9	10	11	12	
13	14	15	16	17	18	
19	20	21	22	23	24	
25	26	27	28	29	30	
31	32	33	34	35	36	

Basic Algorithm

- $S=$ set of sets of connected cells
- $\mathrm{E}=$ set of edges
- Maze = set of maze edges initially empty

```
While there is more than one set in S
    pick a random edge ( }\textrm{x},\textrm{y}\mathrm{ ) and remove from E
    u := Find(x);
    v:= Find(y);
    if u\not=v then
        Union(u,v)
    else
        add (x,y) to Maze
All remaining members of E together with Maze form the maze
```


Example Step

Pick $(8,14)$
S
\{1,2, $\mathbf{7}, 8,9,13,19\}$

$\{3\}$
$\{4\}$
$\{5\}$
\{6\}
\{10\}
$\{11, \underline{17}\}$
\{12\}
$\{14, \underline{20}, 26,27\}$
$\{15, \underline{16}, 21\}$
$\{22,23,24,29,30,32$
33,34,35,36\}

Example

S	
\{1,2, $\left.{ }^{\text {, }}, 8,9,13,19\right\}$	
\{3\}	Find(8) $=7$
\{4\}	Find (14) $=20$
\{5\}	
\{6\}	Union(7 20)
\{10\}	Union(7,20)
$\{11,17\}$	
\{12\}	
$\{14,20,26,27\}$	
$\{15,16,21\}$	
\{22,23,24,29,39,32	
33,34,35,36\}	

S
$\{1,2, \underline{7}, 8,9,13,19,14,2026,27\}$ \{3\}
\{4\}
\{5\}
\{6\}
\{10\}
\{11,17\}
\{12\}
$\{15,16,21\}$
$\{22,23,24,29,39,32$
33,34,35,36\}

Example

Pick $(19,20)$

S
\{1,2, 7, 8,9, 13,19
$14,20,26,27\}$
\{3\}
\{4\}
\{5\}
\{6\}
\{10\}
$\{11, \underline{17}\}$
\{12\}
$\{15, \underline{16}, 21\}$
$\{22,23,24,29,39,32$
33,34,35,36\}

Example at the End

								$\begin{aligned} & \mathrm{S} \\ & \{1,2,3,4,5,6, \underline{7}, \ldots 36\} \end{aligned}$	
Start	1	2	3		5	6			
	7	8	9	10	11	12		-	$\begin{aligned} & \text { E } \\ & \text { Maze } \end{aligned}$
	13	14	15	16	17	18			
	19	20	21	22	23	24			
	25	26	27	28	29	30			
	31	32	33	34	35	36	End		

Implementing the DS ADT

- n elements, Total Cost of: m finds, $\leq n-1$ unions
- Target complexity: $O(m+n)$ i.e. $O(1)$ amortized
- O(1) worst-case for find as well as union would be great, but... Known result: find and union cannot both be done in worst-case $O(1)$ time

Implementing the DS ADT

- Observation: trees let us find many elements given one root...
- Idea: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...
- Idea: Use one tree for each equivalence class. The name of the class is the tree root.

Up-Tree for DU/F

Initial state

(6) 7

Intermediate state

(3)

Find Operation

- Find (x) follow x to the root and return the root

(3)

Find(6) $=7$

Union Operation

- Union(i,j) - assuming i and j roots, point i to j.

Simple Implementation

- Array of indices
$\mathrm{Up}[\mathrm{x}]=0$ means x is a root.

Union

```
Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}
```

Constant Time!

Exercise

- Design Find operator
- Recursive version
- Iterative version

```
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
???
}
```


A Bad Case

(1) (2) (3) … ©

Find(1) n steps!!

Now this doesn't look good $\cdot:$

Can we do better? Yes!

1. Improve union so that find only takes $\Theta(\log n)$

- Union-by-size
- Reduces complexity to $\Theta(m \log n+n)$

2. Improve find so that it becomes even better!

- Path compression
- Reduces complexity to almost $\Theta(m+n)$

Weighted Union

- Weighted Union
- Always point the smaller tree to the root of the larger tree

Example Again

(1) (2) (3) …

Find(1) constant time

Analysis of Weighted Union

- With weighted union an up-tree of height h has weight at least $2^{\text {h }}$.
- Proof by induction
- Basis: $\mathrm{h}=0$. The up-tree has one node, $2^{0}=1$
- Inductive step: Assume true for all h' < h.

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $n \geq 2^{h}$
- $\log _{2} n \geq h$
- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Worst Case for Weighted Union

n/2 Weighted Unions

$\mathrm{n} / 4$ Weighted Unions

Example of Worst Cast (cont')

After $\mathrm{n}-1=\mathrm{n} / 2+\mathrm{n} / 4+\ldots+1$ Weighted Unions

If there are $n=2^{k}$ nodes then the longest path from leaf to root has length k.

Elegant Array Implementation

	1	2	3	4	5	6		7
up	0	1	0	7	7	5	0	0
weight	2		1					4

Weighted Union

```
W-Union(i,j : index){
//i and j are roots//
    wi := weight[i];
    wj := weight[j];
    if wi < wj then
        up[i] := j;
        weight[j] := wi + wj;
    else
        up[j] :=i;
        weight[i] := wi + wj;
}
```


Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works

Student Activity

Draw the result of Find(e):

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] f 0 do //find root//
        r := up[r];
    if i}\not=r then //compress path//
    k := up[i];
        while k f r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```


Interlude: A Really Slow Function

Ackermann's function is a really big function $\mathrm{A}(x, y)$ with inverse $\alpha(x, y)$ which is really small

How fast does $\alpha(x, y)$ grow?
$\alpha(x, y)=4$ for x far larger than the number of atoms in the universe (2^{300})
α shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences

A More Comprehensible Slow Function

$\log ^{*} x=$ number of times you need to compute log to bring value down to at most 1
E.g. $\log ^{\star} 2=1$
$\log ^{*} 4=\log ^{*} 2^{2}=2$
$\log ^{*} 16=\log ^{*} 2^{2^{2}}=3 \quad(\log \log \log 16=1)$
$\log ^{*} 65536=\log ^{\star} 2^{2^{22}}=4 \quad(\log \log \log \log 65536=$
1)

$$
\log * 2^{65536}=\ldots \ldots \ldots \ldots \ldots=5
$$

Take this: $\alpha(m, n)$ grows even slower than log* $n!!$

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log \mathrm{n})$.
- Time complexity for $m \geq n$ operations on n elements is $\mathrm{O}\left(\mathrm{m} \log ^{*} \mathrm{n}\right)$
- Log * $\mathrm{n}<7$ for all reasonable n . Essentially constant time per operation!
- Using "ranked union" gives an even better bound theoretically.

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
- average time per operation is essentially a constant.
- worst case time for a PC-Find is $\mathrm{O}(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.

Find Solutions

```
Recursive
Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}
Iterative
```

```
Find(up[] : integer array, x : integer) : integer {
```

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
//precondition: x is in the range 1 to size//
while up[x] \# 0 do
while up[x] \# 0 do
x := up[x];
x := up[x];
return x;
return x;
}

```
}
```

