CSE 326: Data Structures Hash Tables

James Fogarty
Autumn 2007

Lecture 14

Dictionary Implementations So Far

	Unsorted linked list	Sorted Array	BST	AVL	Splay (amortized)
Insert					
Find					
Delete					

Hash Tables

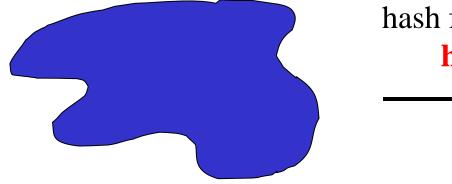
Constant time accesses!

hash table

• A hash table is an array of some fixed size, usually a prime number.

()

• General idea:



hash function:

h(**K**)

key space (e.g., integers, strings)

TableSize -1

Example

- key space = integers
- TableSize = 10

• $h(K) = K \mod 10$

• **Insert**: 7, 18, 41, 94

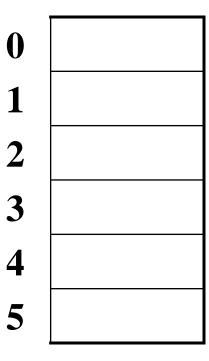
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Another Example

- key space = integers
- TableSize = 6

• $\mathbf{h}(K) = K \mod 6$

• **Insert**: 7, 18, 41, 34



Hash Functions

- 1. simple/fast to compute,
- 2. Avoid collisions
- 3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

- key space = strings
- $s = s_0 s_1 s_2 \dots s_{k-1}$
- 1. $h(s) = s_0 \mod TableSize$
- 2. $h(s) = \begin{pmatrix} \sum_{i=0}^{k-1} s_i \\ \sum_{i=0}^{k-1} s_i \end{pmatrix} \mod TableSize$
- 3. $h(s) = \left(\sum_{i=0}^{k-1} s_i \cdot 37^{-i}\right) \mod Table Size$

Collision Resolution

Collision: when two keys map to the same location in the hash table.

Two ways to resolve collisions:

- 1. Separate Chaining
- 2. Open Addressing (linear probing, quadratic probing, double hashing)

Separate Chaining

0	
1	
2	
3	
4	
23456	
6	
7	
8	
9	

• Separate chaining:

All keys that map to the same hash value are kept in a list (or "bucket").

Analysis of find

• Defn: The load factor, λ , of a hash table is

the ratio: $\underline{N} \leftarrow \text{no. of elements}$

 $^{\rm M}$ \leftarrow table size

For separate chaining, λ = average # of elements in a bucket

• Unsuccessful find:

• Successful find:

How big should the hash table be?

• For Separate Chaining:

tableSize: Why Prime?

Suppose

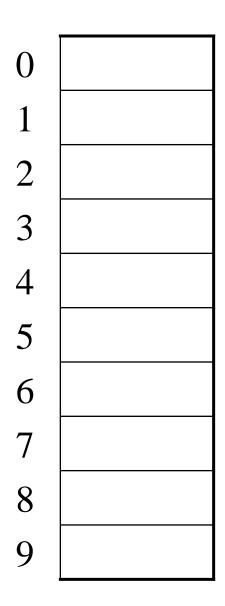
data stored in hash table: 7160, 493, 60, 55, 321,900, 810

- tableSize = 10 data hashes to 0, 3, $\underline{0}$, 5, 1, $\underline{0}$, $\underline{0}$
- tableSize = 11 data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends to have a pattern

Being a multiple of 11 is usually *not* the pattern ©

Open Addressing



• Linear Probing: after checking spot h(k), try spot h(k)+1, if that is full, try h(k)+2, then h(k)+3, etc.

Terminology Alert!

"Open Hashing" "Closed Hashing"

equals

equals

Weiss "Separate Chaining" "Open Addressing"

Linear Probing

$$f(i) = i$$

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize

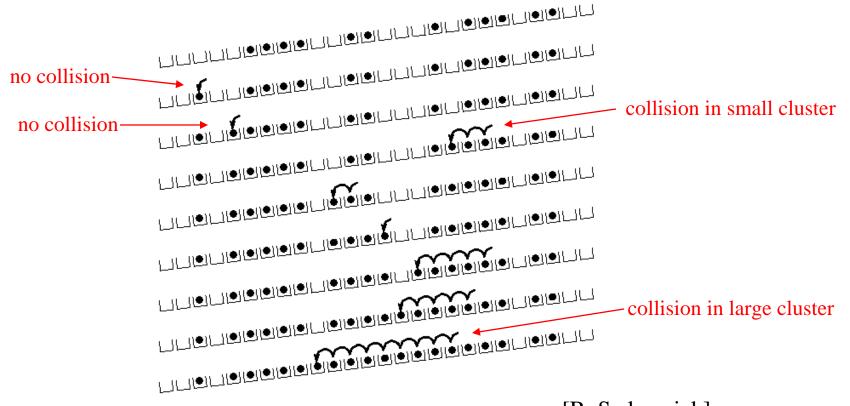
1^{th} probe = (h(k) + 1) mod TableSize

2^{th} probe = (h(k) + 2) mod TableSize

....

i^{th} probe = (h(k) + i) mod TableSize
```

Linear Probing – Clustering



[R. Sedgewick]

Load Factor in Linear Probing

- For any $\lambda < 1$, linear probing will find an empty slot
- Expected # of probes (for large table sizes)
 - successful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)} \right)$
 - unsuccessful search: $\frac{1}{2} \left(1 + \frac{1}{(1-\lambda)^2} \right)$
- Linear probing suffers from *primary clustering*
- Performance quickly degrades for $\lambda > 1/2$

Quadratic Probing

$$f(i) = i^2$$

Less likely to encounter Primary Clustering

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + 1) mod TableSize

2^{th} probe = (h(k) + 4) mod TableSize

3^{th} probe = (h(k) + 9) mod TableSize

...

i^{th} probe = (h(k) + i^2) mod TableSize
```

Quadratic Probing

0	
1	
2	
2 3	
4	
45	
6	
7	
8	
9	

Quadratic Probing Example insert(40) insert(48) insert(5) insert(5)

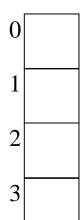
insert(76)

insert(55)

$$76\%7 = 6$$

$$40\%7 = 5$$

$$48\%7 = 6$$



4

5

6

But...
$$\frac{insert(47)}{47\%7 = 5}$$

Quadratic Probing: Success guarantee for $\lambda < \frac{1}{2}$

- If size is prime and $\lambda < \frac{1}{2}$, then quadratic probing will find an empty slot in size/2 probes or fewer.
 - -show for all $0 \le i,j \le size/2$ and $i \ne j$ $(h(x) + i^2)$ mod $size \ne (h(x) + j^2)$ mod size
 - -by contradiction: suppose that for some $i \neq j$: $(h(x) + i^2) \mod size = (h(x) + j^2)$ mod size
 - \Rightarrow i² mod size = j² mod size

Quadratic Probing: Properties

• For any $\lambda < \frac{1}{2}$, quadratic probing will find an empty slot; for bigger λ , quadratic probing may find a slot

- Quadratic probing does not suffer from *primary* clustering: keys hashing to the same *area* are not bad
- But what about keys that hash to the same *spot*?
 - Secondary Clustering!

Double Hashing

$$f(i) = i * g(k)$$
 where g is a second hash function

• Probe sequence:

```
0^{th} probe = h(k) mod TableSize

1^{th} probe = (h(k) + g(k)) mod TableSize

2^{th} probe = (h(k) + 2*g(k)) mod TableSize

3^{th} probe = (h(k) + 3*g(k)) mod TableSize

...

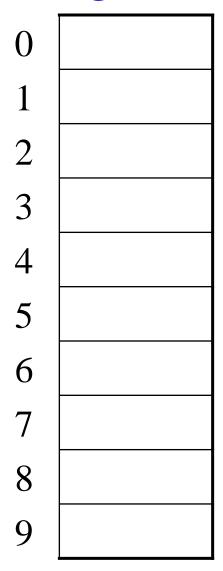
i^{th} probe = (h(k) + i*g(k)) mod TableSize
```

Double Hashing Example

 $h(k) = k \mod 7 \text{ and } g(k) = 5 - (k \mod 5)$

	76		93		40			47		10		55
0		0		О		0			0		0	
1		1		1		1		47	1	47	1	47
2		2	93	2	93	2		93	2	93	2	93
3		3		3		3	1		3	10	3	10
4		4		4		4			4		4	55
5		5		5	40	5		40	5	40	5	40
6	76	6	76	6	76	6		76	6	76	6	76
Probes	1		1		1			2		1		2

Resolving Collisions with Double Hashing



```
Hash Functions:
H(K) = K \mod M
H_2(K) = 1 + ((K/M) \mod (M-1))
M =
```

Insert these values into the hash table in this order. Resolve any collisions with double hashing:

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2x as large) and hash all the items from the original table into the new table.

- When to rehash?
 - half full ($\lambda = 0.5$)
 - when an insertion fails
 - some other threshold
- Cost of rehashing?

Java hashCode() Method

- Class Object defines a hashCode method
 - Intent: returns a suitable hashcode for the object
 - Result is arbitrary int; must scale to fit a hash table (e.g. obj.hashCode() % nBuckets)
 - Used by collection classes like HashMap
- Classes should override with calculation appropriate for instances of the class
 - Calculation should involve semantically "significant" fields of objects

hashCode() and equals()

• To work right, particularly with collection classes like HashMap, hashCode() and equals() must obey this rule:

if a.equals(b) then it must be true that a.hashCode() == b.hashCode()

- Why?
- Reverse is not required

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity.