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Logistics

• Closed Notes
• Closed Book
• Open Mind
• Four Function Calculator Allowed
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Material Covered

• Everything we’ve talked/read in class up 
to and including B-trees
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Material Not Covered

• We won’t make you write syntactically 
correct Java code (pseudocode okay)

• We won’t make you do a super hard 
proof

• We won’t test you on the details of 
generics, interfaces, etc. in Java
› But you should know the basic ideas
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Terminology
• Abstract Data Type (ADT)

› Mathematical description of an object with set of 
operations on the object.  Useful building block.

• Algorithm
› A high level, language independent, description of 

a step-by-step process
• Data structure

› A specific family of algorithms for implementing an 
abstract data type.

• Implementation of data structure
› A specific implementation in a specific language
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Algorithms vs Programs

• Proving correctness of an algorithm is very 
important
› a well designed algorithm is guaranteed to work 

correctly and its performance can be estimated

• Proving correctness of a program (an 
implementation) is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap 

between mathematical algorithms and programs
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• FIFO: First In First Out
• Queue operations

create
destroy
enqueue
dequeue
is_empty

First Example: Queue ADT

F E D C Benqueue dequeueG A



8

Second Example: Stack ADT

• LIFO: Last In First Out
• Stack operations

› create
› destroy
› push
› pop
› top
› is_empty

A

B
C
D
E
F

E D C B A

F
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Priority Queue ADT
1. PQueue data : collection of data with 

priority

2. PQueue operations
› insert
› deleteMin

3. PQueue property: for two elements in the 
queue, x and y, if x has a lower priority 
value than y, x will be deleted before y
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The Dictionary ADT

• Data:
› a set of

(key, value) 
pairs

• Operations:
› Insert (key, 

value)
› Find (key)
› Remove (key)The Dictionary ADT is also

called the “Map ADT”

• jfogarty
James
Fogarty
CSE 666

• phenry
Peter
Henry
CSE 002

• boqin
Bo
Qin
CSE 002

insert(jfogarty, ….)

find(boqin)
• boqin

Bo, Qin, …
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Proof by Induction

• Basis Step: The algorithm is correct for 
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume 
that the algorithm works correctly for the 
first k cases.

• Inductive Step (n=k+1): Given the 
hypothesis above, show that the k+1 
case will be calculated correctly.
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Recursive algorithm for sum

• Write a recursive function to find the 
sum of the first n integers stored in 
array v.

sum(integer array v, integer n) returns integer
if n = 0 then

sum = 0
else

sum = nth number + sum of first n-1 numbers
return sum
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Program Correctness by 
Induction

• Basis Step:
sum(v,0) = 0. 

• Inductive Hypothesis (n=k): 
Assume sum(v,k) correctly returns sum of 
first k elements of v, i.e. v[0]+v[1]+…+v[k-
1]+v[k]

• Inductive Step (n=k+1): 
sum(v,n) returns
v[k]+sum(v,k-1)= (by inductive hyp.)
v[k]+(v[0]+v[1]+…+v[k-1])=
v[0]+v[1]+…+v[k-1]+v[k]
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Solving Recurrence Relations

1. Determine the recurrence relation.  What is/are 
the base case(s)?

2. “Expand” the original relation to find an equivalent 
general expression in terms of the number of 
expansions.

3. Find a closed-form expression by setting the 
number of expansions to a value which reduces 
the problem to a base case
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Asymptotic Analysis

• Asymptotic analysis looks at the order
of the running time of the algorithm
› A valuable tool when the input gets “large”
› Ignores the effects of different machines or 

different implementations of the same 
algorithm

› Intuitively, to find the asymptotic runtime, 
throw away constants and low-order terms

› Linear search is T(n) = 3n + 2 ∈ O(n)
› Binary search is T(n) = 4 log2n + 4 ∈ O(log n)
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Meet the Family

• O( f(n) ) is the set of all functions asymptotically less 
than or equal to f(n)
› o( f(n) ) is the set of all functions asymptotically 

strictly less than f(n)

• Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n)
› ω( f(n) ) is the set of all functions asymptotically 

strictly greater than f(n)

• θ( f(n) ) is the set of all functions asymptotically equal
to f(n)
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Definition of Order Notation
• Upper bound: T(n)  = O(f(n)) Big-O

Exist positive constants c and n’ such that 
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n)  = Ω(g(n)) Omega
Exist positive constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n)  = θ(f(n)) Theta
When both hold:

T(n)  =  O(f(n))
T(n)  =  Ω(f(n))
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Big-O: Common Names
› constant: O(1)
› logarithmic: O(log n) (logkn, log n2 ∈ O(log n))
› linear: O(n)
› log-linear: O(n log n)
› quadratic: O(n2)
› cubic: O(n3)
› polynomial: O(nk) (k is a constant)
› exponential: O(cn) (c is a constant > 1)
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Perspective: Kinds of Analysis
• Running time may depend on actual 

data input, not just length of input
• Distinguish

› Worst Case
• Your worst enemy is choosing input

› Best Case
› Average Case

• Assumes some probabilistic distribution of 
inputs

› Amortized
• Average time over many operations
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Circular Array Queue Data 
Structure

enqueue(Object x) {
Q[back] = x ;
back = (back + 1) % size
}

b c d e f

Q
0 size - 1

front back

dequeue() {
x = Q[front] ;
front = (front + 1) % size;
return x ;
}

How test for empty list?

How to find K-th
element in the queue?

What is complexity of 
these operations?

Limitations of this 
structure?
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Linked List Queue Data Structure
b c d e f

front back

void enqueue(Object x) {
if (is_empty())

front = back = new Node(x)
else

back->next = new Node(x)
back = back->next

}
bool is_empty() {

return front == null
}

Object dequeue() {
assert(!is_empty)
return_data = front->data
temp = front
front = front->next
delete temp
return return_data

}
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Brief interlude: Some 
Definitions:

A Perfect binary tree – A binary tree with 
all leaf nodes at the same depth. All 
internal nodes have 2 children. 

2592
215

11

307 101 3

16

13 19 22

height h
2h+1 – 1 nodes
2h – 1 non-leaves
2h  leaves
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Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is 

completely filled, with the possible exception 
of the bottom level, which is filled left to right.

Examples:
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Representing Complete 
Binary Trees in an Array

GED
CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210
LKJIHGFEDCBA

implicit (array) implementation:
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Heap Order Property
Heap order property: For every non-root 

node X, the value in the parent of X is 
less than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap
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Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

50 700

85

65
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BuildHeap: Floyd’s Method
5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12
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CPU

Cache

Memory

Disk

Cycles to access:
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4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d

children
• Still representable by 

array
• Good choices for d:

› (choose a power of two 
for efficiency)

› fit one set of children in a 
cache line

› fit one set of children on a 
memory page/disk block

3 7 2 8 5 121110 6 9112
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New Heap Operation: Merge

Given two heaps, merge them into one 
heap
› first attempt: insert each element of the 

smaller heap into the larger. 
runtime:

› second attempt: concatenate binary heaps’
arrays and run buildHeap.
runtime:
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Leftist Heaps

Idea: 
Focus all heap maintenance work in 
one small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right
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null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children 

Definition: Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0

000

0?1

??

?

Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0



3310/23/2007 33

Leftist Heap Properties
• Heap-order property

› parent’s priority value is ≤ to childrens’ priority 
values

› result: minimum element is at the root

• Leftist property
› For every node x, npl(left(x)) ≥ npl(right(x))
› result: tree is at least as “heavy” on the left as 

the rightAre leftist trees…
complete? 
balanced?
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Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)

› pretend node is a size 1 leftist heap
› insert by merging original heap with one node 

heap

• deleteMin with heap size n: O(log n)
› remove and return root
› merge left and right subtrees

merge

merge
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Skew Heaps
Problems with leftist heaps

› extra storage for npl
› extra complexity/logic to maintain and check npl
› right side is “often” heavy and requires a switch

Solution: skew heaps
› “blindly” adjusting version of leftist heaps
› merge always switches children when fixing right 

path
› amortized time for: merge, insert, deleteMin = O(log

n)
› however, worst case time for all three = O(n)



3610/23/2007 36

Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path 
length!

• All operations rely on merge

⇒ worst case complexity of all ops = 
• Probably won’t get to amortized analysis 

in this course, but see Chapter 11 if 
curious.

• Result: M merges take time M log n

⇒ amortized complexity of all ops = 
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Binomial Queue with n
elements

Binomial Q with n elements has a unique
structural representation in terms of binomial 
trees!

Write n in binary:    n = 1101 (base 2) = 13 (base 10)

1 B3 1 B2 No B1 1 B0



3810/23/2007 38

Properties of Binomial Queue
• At most one binomial tree of any height

• n nodes  ⇒ binary representation is of size ? 
⇒ deepest tree has height ?
⇒ number of trees is ?

Define: height(forest F) = maxtree T in F { height(T) 
}

Binomial Q with n nodes has height Θ(log n)
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Merging Two Binomial 
Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 0 to maxheight {

a. m ← total number of  Bk’s in the two BQs
b. if m=0:    continue;
c. if m=1: continue;
d. if m=2: combine the two Bk’s to form a 

Bk+1
e. if m=3: retain one Bk and

combine the other two to form a Bk+1

} Claim: When this process ends, the forest
has at most one tree of any height

# of 1’s
0+0 = 0
1+0 = 1
1+1 = 0+c
1+1+c = 1+c
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deleteMin: Example

4
8

3

7

5

7BQ

8

7

5

find and delete
smallest root merge BQ 

(without
the shaded part)
and BQ’

BQ’
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Binary Trees• Binary tree is
› a root
› left subtree (maybe 

empty) 
› right subtree (maybe 

empty) 

• Representation:

A

B

D E

C

F

HG

JI
Data

right 
pointer

left
pointer
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Binary Tree: Representation
A

right 
pointer

left
pointer A

B

D E

C

F

B
right 

pointer
left

pointer

C
right 

pointer
left

pointer

D
right 

pointer
left

pointer

E
right 

pointer
left

pointer

F
right 

pointer
left

pointer
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Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree
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More Recursive Tree 
Calculations:

Tree Traversals
A traversal is an order for 

visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, 

right subtree

• In-order: Left subtree, root, right 
subtree

+

*

2 4

5

(an expression tree)
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Binary Tree: Some Numbers!
For binary tree of height h:

› max # of leaves: 

› max # of nodes:

› min # of leaves:

› min # of nodes:

Average Depth for N nodes?

2h, for perfect tree

2h+1 – 1, for perfect tree

1, for “list” tree

h+1, for “list” tree



46

Binary Search Tree Data 
Structure

4

121062

115

8

14

13

7 9

• Structural property
› each node has ≤ 2 children
› result:

• storage is small
• operations are simple
• average depth is small

• Order property
› all keys in left subtree smaller

than root’s key
› all keys in right subtree larger

than root’s key
› result: easy to find any given key

• What must I know about what I store?

Comparison, equality testing
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Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)

return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)

return Find(key,

root.right);
else

return root;
}

2092

155

10

307 17

Runtime:
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Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only 
at the leaves – easy!
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Deletion
• Removing an item disrupts the tree 

structure.
• Basic idea: find the node that is to be 

removed.  Then “fix” the tree so that it is 
still a binary search tree.

• Three cases:
› node has no children (leaf node)
› node has one child
› node has two children
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Deletion – The Two Child 
Case

Idea: Replace the deleted node with a 
value guaranteed to be between the two 
child subtrees

Options:
• succ from right subtree: findMin(t.right)
• pred from left subtree : findMax(t.left)
Now delete the original node containing 

succ or pred
• Leaf or one child case – easy!
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Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

› Average height is O(log n)
› Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n)        – strong enough!
2. is easy to maintain                  – not too strong!
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The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties
1. Binary tree property 

(0,1, or 2 children)
2. Heights of left and 

right subtrees of 
every node
differ by at most 1

Result:
Worst case depth of 

any node is: O(log
n)

15

This is an 
AVL tree
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AVL trees: find, insert
• AVL find: 

› same as BST find.
• AVL insert: 

› same as BST insert, except may 
need to “fix” the AVL tree after 
inserting new value.
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Single rotation in general
a

Z
Y

b

Xh h
h

h ≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?
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Double rotation in general
a

Z

b

W

c

X Yh-1

h

h h -1

a

Z

b

W

c

X Yh-1 hh h

h ≥ 0

W < b <X < c < Y < a < Z

Height of tree before?   Height of tree after?  Effect on Ancestors?
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Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:

case #1: Perform single rotation and exit

case #2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

Zig-zig

Zig-zag
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Splay Trees

• Blind adjusting version of AVL trees
› Why worry about balances?  Just rotate anyway!

• Amortized time per operations is O(log n)
• Worst case time per operation is O(n)

› But guaranteed to happen rarely

Insert/Find always rotate node to the root!
SAT/GRE Analogy question:

AVL is to Splay trees as ___________ is to __________

Leftish heap : Skew heap
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Recall: Amortized Complexity
If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).

Amortized complexity is   worst-case guarantee over
sequences of operations.

• Worst case time per operation can still be large, say O(n)

• Worst case time for any sequence of M operations is O(M f(n))

Average time per operation for any sequence is O(f(n))
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The Splay Tree Idea

17

10

92

5

If you’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

3
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1. Find or insert a node k
2. Splay k to the root using:

zig-zag, zig-zig, or plain old zig rotation

Why could this be good?? 

1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Find/Insert in Splay Trees



61

Splay: Zig-Zag*

g

X
p

Y

k

Z

W

*Just like an…

k

Y

g

W

p

ZX

AVL double rotation

Helps those in blue
Hurts those in red

Which nodes improve depth?

k and its original children
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Splay: Zig-Zig* k

Z

Y

p

X

g

W

g

W

X

p

Y

k

Z

*Is this just two AVL single rotations in a row?

Not quite – we rotate g and p, then p and k

Why does this help?
Same number of nodes helped as hurt. But later rotations help the whole subtree.



63

Special Case for Root: Zig
p

X

k

Y

Z

root k

Z

p

Y

X

root

Down 1 level

Relative depth of p, Y, Z? Relative depth of everyone else?

Much better
Why not drop zig-zig and just zig all the way?

Zig only helps one child!
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CPU

(has registers)

Cache

Main Memory

Disk

Time to access
(conservative)

2-10 ns

40-100 ns

a few 
milliseconds

(5-10 Million ns)

SRAM

8KB - 4MB

DRAM

up to 10GB

many GB

Cache

Main Memory

Disk

1 ns per instruction
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Solution: B-Trees
• specialized M-ary search trees

• Each node has (up to) M-1 keys:
› subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y 

• Pick branching factor M
such that each node 
takes one full 
{page, block}
of memory

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x
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B-Tree: Example
B-Tree with M = 4 (# pointers in internal node)
and L = 4 (# data items in leaf)

1
AB

2
xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

10 40

3 15 20 30 50

Note: All leaves at the same depth!Data objects, that I’ll 
ignore in slides
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B-Tree Properties ‡

› Data is stored at the leaves
› All leaves are at the same depth and 

contains between ⎡L/2⎤ and L data items
› Internal nodes store up to M-1 keys
› Internal nodes have between ⎡M/2⎤ and M

children
› Root (special case) has between 2 and M

children (or root could be a leaf) 
‡These are technically B+-Trees
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Insertion Algorithm
1. Insert the key in its leaf
2. If the leaf ends up with L+1 items, 

overflow!
› Split the leaf into two nodes:

• original with  ⎡(L+1)/2⎤
items

• new one with ⎣(L+1)/2⎦
items

› Add the new child to the parent
› If the parent ends up with M+1

items, overflow!

3. If an internal node ends up with M+1 
items, overflow!
› Split the node into two nodes:

• original with  ⎡(M+1)/2⎤
items

• new one with ⎣(M+1)/2⎦
items

› Add the new child to the parent
› If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in two and 
hang the new nodes under a new 
root

This makes the tree deeper!
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Deletion Algorithm
1. Remove the key from its leaf

2. If the leaf ends up with fewer than ⎡L/2⎤
items, underflow!
› Adopt data from a sibling; update the 

parent
› If adopting won’t work, delete node 

and merge with neighbor
› If the parent ends up with fewer than

⎡M/2⎤ items, underflow!
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Deletion Slide Two
3. If an internal node ends up with fewer than ⎡M/2⎤

items, underflow!
› Adopt from a neighbor;

update the parent
› If adoption won’t work,

merge with neighbor
› If the parent ends up with fewer than ⎡M/2⎤

items, underflow!

4. If the root ends up with only one child, make the 
child the new root of the tree

This reduces the 
height of the tree!


