CSE 326: Data Structures

James Fogarty
Autumn 2007
Lecture 13

Logistics

- Closed Notes
- Closed Book
- Open Mind
- Four Function Calculator Allowed

Material Covered

- Everything we've talked/read in class up to and including B-trees

Material Not Covered

- We won't make you write syntactically correct Java code (pseudocode okay)
- We won't make you do a super hard proof
- We won't test you on the details of generics, interfaces, etc. in Java
, But you should know the basic ideas

Terminology

- Abstract Data Type (ADT)
> Mathematical description of an object with set of operations on the object. Useful building block.
- Algorithm
> A high level, language independent, description of a step-by-step process
- Data structure
> A specific family of algorithms for implementing an abstract data type.
- Implementation of data structure
> A specific implementation in a specific language

Algorithms vs Programs

- Proving correctness of an algorithm is very important
> a well designed algorithm is guaranteed to work correctly and its performance can be estimated
- Proving correctness of a program (an implementation) is fraught with weird bugs
, Abstract Data Types are a way to bridge the gap between mathematical algorithms and programs

First Example: Queue ADT

- FIFO: First In First Out
- Queue operations
create
destroy
enqueue

dequeue
is_empty

Second Example: Stack ADT

- LIFO: Last In First Out
- Stack operations
> create
, destroy
, push
, pop
, top
, is_empty

Priority Queue ADT

1. PQueue data : collection of data with priority
2. PQueue operations
, insert
> deleteMin
3. PQueue property: for two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

The Dictionary ADT

- Data:
, a set of (key, value) pairs
- Operations:
, Insert (key, value)
- jfogarty

James
Fogarty
CSE 666

- phenry

Peter
Henry
CSE 002

- boqin

Bo
Qin
CSE 002
> Find (key)
, Remove "her (eficitignary ADT is also

Proof by Induction

- Basis Step: The algorithm is correct for a base case or two by inspection.
- Inductive Hypothesis (n=k): Assume that the algorithm works correctly for the first k cases.
- Inductive Step ($\mathrm{n}=\mathrm{k}+1$): Given the hypothesis above, show that the k+1 case will be calculated correctly.

Recursive algorithm for sum

- Write a recursive function to find the sum of the first \mathbf{n} integers stored in array \mathbf{V}.
sum(integer array v, integer n) returns integer if $n=0$ then
sum $=0$
else
sum $=$ nth number + sum of first $n-1$ numbers return sum

Program Correctness by Induction

- Basis Step: $\operatorname{sum}(v, 0)=0 . \checkmark$
- Inductive Hypothesis ($\mathrm{n}=\mathrm{k}$): Assume sum (\mathbf{v}, \mathbf{k}) correctly returns sum of first k elements of v, i.e. $v[0]+v[1]+. . .+v[k-$ $1]+\mathrm{v}[\mathrm{k}]$
- Inductive Step ($\mathrm{n}=\mathrm{k}+1$):
sum(\mathbf{v}, n) returns

$$
\begin{aligned}
& v[k]+\operatorname{sum}(v, k-1)=(\text { by inductive hyp.) } \\
& v[k]+(v[0]+v[1]+\ldots+v[k-1])= \\
& v[0]+v[1]+\ldots+v[k-1]+v[k]
\end{aligned}
$$

Solving Recurrence Relations

1. Determine the recurrence relation. What is/are the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
> A valuable tool when the input gets "large"
> Ignores the effects of different machines or different implementations of the same algorithm
> Intuitively, to find the asymptotic runtime, throw away constants and low-order terms
, Linear search is $\mathrm{T}(n)=3 n+2 \in \mathbf{O}(n)$
, Binary search is $\mathrm{T}(n)=4 \log _{2} n+4 \in \mathrm{O}(\log n)$

Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
> $\mathrm{o}(\mathrm{f}(n))$ is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
> $\omega(f(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal ${ }_{16}$ to $f(n)$

Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad$ Big-O

Exist positive constants c and n ' such that

$$
T(n) \leq c f(n) \text { for all } n \geq n^{\prime}
$$

- Lower bound: $T(n)=\Omega(g(n))$

Omega
Exist positive constants c and n ' such that

$$
T(n) \geq c g(n) \text { for all } n \geq n^{\prime}
$$

- Tight bound: $\quad T(n)=\theta(f(n))$

Theta
When both hold:

$$
\begin{aligned}
& T(n)=O(f(n)) \\
& T(n)=\Omega(f(n))
\end{aligned}
$$

Big-O: Common Names

, constant: $\mathrm{O}(1)$
$\begin{array}{ll}\text {, logarithmic: } & O(\log n) \\ \text {, linear: } & O(n) \\ \text {, log-linear: } & O(n \log n)\end{array}$
, quadratic: $O\left(\mathrm{n}^{2}\right)$
> cubic: $\quad O\left(n^{3}\right)$
, polynomial: $O\left(n^{k}\right) \quad(k$ is a constant)
> exponential: $O\left(\mathrm{c}^{\mathrm{n}}\right) \quad(\mathrm{c}$ is a constant $>1)$

Perspective: Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
, Worst Case
- Your worst enemy is choosing input
> Best Case
> Average Case
- Assumes some probabilistic distribution of inputs
> Amortized
- Average time over many operations

Circular Array Queue Data

 Structure

```
enqueue(Object x) {
    Q[back] = x ;
    back = (back + 1) % size
enqueue(Object x) \{
Q[back] = x ;
back = (back + 1) \% size
```

 \}
 dequeue() \{
x = Q[front] ;
front = (front + 1) \% size;
return x ;
\} \}
dequeue() \{
$x=Q[f r o n t] ;$
front $=(f r o n t+1) \%$ size $;$
return x ;
\}

How test for empty list?
How to find K-th element in the queue?

What is complexity of these operations?

Limitations of this structure?

Linked List Queue Data Structure


```
void enqueue(Object x) {
    if (is_empty())
        front = back = new Node(x)
    else
        back->next = new Node(x)
        back = back->next
}
bool is_empty() {
    return front == null
}
```


Brief interlude: Some Definitions:

A Perfect binary tree - A binary tree with all leaf nodes at the same depth. All internal nodes have 2 children.

Heap Structure Property

- A binary heap is a complete binary tree. Complete binary tree - binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.
Examples:

Representing Complete Binary Trees in an Array

From node i:
left child: right child:
parent:
implicit (array) implementation:

	A	B	C	\mathbf{D}	\mathbf{E}	F	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}	\mathbf{K}	\mathbf{L}	
0	1	2	3	4	5	6	7	8	9	10	11	12	13

Heap Order Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X.

not a heap

Heap Operations

- findMin:
- insert(val): percolate up.
- deleteMin: percolate down.

BuildHeap: Floyd's Method

12	5	11	3	10	6	9	4	8	1	7	2

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property!

Cycles to access:

A Solution: d-Heaps

- Each node has d children
- Still representable by array
- Good choices for d :
> (choose a power of two for efficiency)

, fit one set of children in a cache line
, fit one set of children on a memory page/disk block

New Heap Operation: Merge

Given two heaps, merge them into one heap
, first attempt: insert each element of the smaller heap into the larger. runtime:
, second attempt: concatenate binary heaps' arrays and run buildHeap. runtime:

Leftist Heaps

Idea:

Focus all heap maintenance work in one small part of the heap

Leftist heaps:

1. Most nodes are on the left
2. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node $x=$ the number of nodes between x and a null in its subtree

OR
$\mathrm{npl}(\mathrm{x})=\min$ distance to a descendant with 0 or 1 children

- $n p l($ null $)=-1$
- $n p l($ leaf $)=0$
- $n p l($ single-child node $)=0$

Equivalent definitions:

1. $n p l(x)$ is the height of largest complete subtree rooted at x

Leftist Heap Properties

- Heap-order property
> parent's priority value is \leq to childrens' priority values
> result: minimum element is at the root
- Leftist property
, For every node $x, n p /(\operatorname{left}(x)) \geq n p l(\operatorname{right}(x))$
> result: tree is at least as "heavy" on the left as the right teftist trees...

Operations on Leftist Heaps

- merge with two trees of total size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- insert with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
, pretend node is a size 1 leftist heap
, insert by merging original heap with one node heap

- deleteMin with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
, remove and return root
, nenge left and right subtrees

Skew Heaps

Problems with leftist heaps
> extra storage for npl
> extra complexity/logic to maintain and check npl
, right side is "often" heavy and requires a switch
Solution: skew heaps
, "blindly" adjusting version of leftist heaps
> merge always switches children when fixing right path
> amortized time for: merge, insert, deleteMin $=O$ (log n)
, bowdever, worst case time for all three $=O(n)$

Runtime Analysis: Worst-case and Amortized

- No worst case guarantee on right path length!
- All operations rely on merge
\Rightarrow worst case complexity of all ops =
- Probably won't get to amortized analysis in this course, but see Chapter 11 if curious.
- Result: M merges take time $M \log n$
\Rightarrow amortized complexitv of all ods $=$

Binomial Queue with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Write n in binary: $n=1101_{\text {(base 2) }}=13_{\text {(base 10) }}$

Properties of Binomial Queue

- At most one binomial tree of any height
- n nodes \Rightarrow binary representation is of size ? \Rightarrow deepest tree has height?
\Rightarrow number of trees is ?

Define: height(forest F) $=\max _{\text {tree }} \mathrm{T}$ in $\mathrm{F}\{$ height (T) \}

Binomial Q with n nodes has height $\Theta(\log n)$

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 0 to maxheight \{
a. $m \leftarrow$ total number of B_{k} 's in the two BQs
b. if $\mathrm{m}=0$: continue;
\# of 1's
$0+0=0$
continue; $\quad 1+0=1$
c. if $m=1$:
d. if $m=2$: B_{k+1}
combine the two B_{k} 's to form $1+1=0+c$
$1+1+c=1+c$
e. if $m=3$:
retain one B_{k} and
combine the other two to form a B_{k+1}
Claim: When this process ends, the forest

deleteMin: Example

- Binary tree Bis
> a root
> left subtree (maybe empty)
> right subtree (maybe empty)
- Representation:

Binary Tree: Special Cases

Complete Tree

Full Tree

More Recursive Tree Calculations: Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree

(an expression tree)
- In-order: Left subtree, root, right subtree

Binary Tree: Some Numbers!

For binary tree of height h :
> max \# of leaves:
> max \# of nodes:
, min \# of leaves:
, min \# of nodes:

Average Depth for N nodes?

Binary Search Tree Data Structure

- Structural property
, each node has ≤ 2 children
, result:
- storage is small
- operations are simple
- average depth is small
- Order property
> all keys in left subtree smaller than root's key
, all keys in right subtree larger than root's key
> result: easy to find any given key
- What must I know about what I store?

Comparison, equality testing

Insertions happen only at the leaves - easy!

Runtime:

Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
, node has no children (leaf node)
> node has one child
, node has two children

Deletion - The Two Child Case

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees
Options:

- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

- Leaf or one child case - easy!

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
, Average height is $\mathrm{O}(\log n)$
> Worst case height is $\mathrm{O}(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\mathrm{O}(\log n) \quad$ - strong enough!
2. is easy to maintain - not too strong!

The AVL Tree Data Structure

Structural properties

1. Binary tree property (0,1, or 2 children)
2. Heights of left and right subtrees of every node differ by at most 1
Result:
Worst case depth of any node is: O(log n)

AVL trees: find, insert

- AVL find:
, same as BST find.
- AVL insert:
, same as BST insert, except may need to "fix" the AVL tree after inserting new value.

Single rotation in general

$$
\mathbf{X}<\mathbf{b}<\mathbf{Y}<\mathbf{a}<\mathbf{Z}
$$

Height of tree before? Height of tree after? Effect on Ancestors?

Double rotation in general

$$
\mathbf{W}<\mathbf{b}<\mathbf{X}<\mathbf{c}<\mathbf{Y}<\mathbf{a}<\mathbf{Z}
$$

Height of tree before? Height of tree after? Effect on Ancestors?

Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance: zig-zig
? case \#1: Perform single rotation and exit
Zig-zag
case \#2: Perform double rotation and exit Both rotations keep the subtree height unchanged. Hence only one rotation is sufficient!

Splay Trees

- Blind adjusting version of AVL trees
, Why worry about balances? Just rotate anyway!
- Amortized time per operations is $\mathrm{O}(\log n)$
- Worst case time per operation is $\mathrm{O}(n)$
, But guaranteed to happen rarely

Insert/Find always rotate node to the root!
SAT/GRE Analogy question:
AVL is to Splay trees as \qquad is to

Recall: Amortized Complexity If a sequence of M operations takes $O(M f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time per operation can still be large, say $\mathrm{O}(n)$
- Worst case time for any sequence of M operations is $\mathrm{O}(\mathrm{M} \mathrm{f}(n))$

Average time per operation for any sequence is $\mathrm{O}(\mathrm{f}(n))$

$$
\begin{array}{ll}
\text { Amortized complexity is } \begin{array}{l}
\text { worst-case guarantee over } \\
\text { sequences of operations. }
\end{array}
\end{array}
$$

The Splay Tree Idea

Find/Insert in Splay Trees

1. Find or insert a node \boldsymbol{k}
2. Splay k to the root using:
zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, \boldsymbol{k}
o Great if k is accessed again
2. And helps many others!
o Great if many others on the path are accessed

*Just like an...
AVL double rotation

Which nodes improve depth? k and its original children

*Is this just two AVL single rotations in a row?
Not quite - we rotate g and p, then p and k
Why does this help?
Same number of nodes helped as hurt. But later rotations help the whole subtree.

Special Case for Root: Zig

Relative depth of $p, \mathrm{Y}, \mathrm{Z}$?
Relative depth of everyone else?
Down 1 level
Much better
Why not drop zig-zig and just zig all the way?
Zig only helps one child!

Solution: B-Trees

- specialized M-ary search trees
- Each node has (up to) M-1 keys:
> subtree between two keys x and y contains leaves with values v such that $x \leq v<y$
- Pick branching factor M such that each node/ takes one full
 \{page, block\}

B-Tree: Example

B-Tree with $\boldsymbol{M}=4$ (\# pointers in internal node)
and $L=4$ (\# data items in leaf)

Data objects, that I’ll ignore in slides

B-Tree Properties ${ }^{\ddagger}$

, Data is stored at the leaves
, All leaves are at the same depth and contains between $\lceil L / 2\rceil$ and L data items
, Internal nodes store up to M-1 keys
, Internal nodes have between $\lceil M / 2\rceil$ and M children
, Root (special case) has between 2 and M children (or root could be a leaf)

Insertion Algorithm

3. If an internal node ends up with $\mathrm{M}+1$
4. Insert the key in its leaf
5. If the leaf ends up with $L+1$ items, overflow!
, Split the leaf into two nodes:

- original with $\lceil(L+1) / 2\rceil$ items
- new one with $\lfloor(L+1) / 2\rfloor$ items
, Add the new child to the parent
, If the parent ends up with $M+1$ items, overflow!

This makes the tree deeper! items, overflow!
, Split the node into two nodes:

- original with $\lceil(M+1) / 2\rceil$ items
- new one with $\lfloor(M+1) / 2\rfloor$ items
, Add the new child to the parent
> If the parent ends up with $M+1$ items, overflow!

4. Split an overflowed root in two and hang the new nodes under a new root

Deletion Algorithm

1. Remove the key from its leaf
2. If the leaf ends up with fewer than $\lceil\mathbf{L} / \mathbf{2}\rceil$ items, underflow!
> Adopt data from a sibling; update the parent
> If adopting won't work, delete node and merge with neighbor
, If the parent ends up with fewer than
「M/2〕items, underflow!

Deletion Slide Two

3. If an internal node ends up with fewer than $\lceil M / 2\rceil$ items, underflow!
> Adopt from a neighbor; update the parent
> If adoption won't work, merge with neighbor
, If the parent ends up with fewer than $\lceil\mathbf{M} / \mathbf{2}\rceil$ items, underflow!
4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!

