CSE 326: Data Structures

James Fogarty Autumn 2007 Lecture 13

Logistics

- Closed Notes
- Closed Book
- Open Mind
- Four Function Calculator Allowed

Material Covered

 Everything we've talked/read in class up to and including B-trees

Material Not Covered

- We won't make you write syntactically correct Java code (pseudocode okay)
- We won't make you do a super hard proof
- We won't test you on the details of generics, interfaces, etc. in Java
 - > But you should know the basic ideas

Terminology

- Abstract Data Type (ADT)
 - Mathematical description of an object with set of operations on the object. Useful building block.
- Algorithm
 - A high level, language independent, description of a step-by-step process
- Data structure
 - A specific family of algorithms for implementing an abstract data type.
- Implementation of data structure
 - > A specific implementation in a specific language

Algorithms vs Programs

- Proving correctness of an algorithm is very important
 - a well designed algorithm is guaranteed to work correctly and its performance can be estimated
- Proving correctness of a program (an implementation) is fraught with weird bugs
 - Abstract Data Types are a way to bridge the gap between mathematical algorithms and programs

First Example: Queue ADT

- FIFO: First In First Out
- Queue operations create destroy enqueue dequeue is_empty
 Queue operations G enqueue F E D C B F E D C B

Second Example: Stack ADT

- LIFO: Last In First Out
- Stack operations
 - › create
 - > destroy
 - > push
 - > pop
 - > top
 - > is_empty

Priority Queue ADT

1. PQueue <u>data</u> : collection of data with priority

2. PQueue operations

- > insert
- > deleteMin
- 3. PQueue property: for two elements in the queue, x and y, if x has a lower priority value than y, x will be deleted before y

The Dictionary ADT

Remove (Rey) (Key) (the "Map ADT"

Proof by Induction

- **Basis Step:** The algorithm is correct for a base case or two by inspection.
- Inductive Hypothesis (n=k): Assume that the algorithm works correctly for the first k cases.
- Inductive Step (n=k+1): Given the hypothesis above, show that the k+1 case will be calculated correctly.

Recursive algorithm for sum

 Write a *recursive* function to find the sum of the first **n** integers stored in array **v**.

```
sum(integer array v, integer n) returns integer
if n = 0 then
   sum = 0
else
   sum = nth number + sum of first n-1 numbers
   return sum
```

Program Correctness by Induction

• Basis Step:

 $sum(v,0) = 0.\checkmark$

- Inductive Hypothesis (n=k): Assume sum(v,k) correctly returns sum of first k elements of v, i.e. v[0]+v[1]+...+v[k-1]+v[k]
- Inductive Step (n=k+1):

sum(v,n) returns
v[k]+sum(v,k-1)= (by inductive hyp.)
v[k]+(v[0]+v[1]+...+v[k-1])=
v[0]+v[1]+...+v[k-1]+v[k] ✓

Solving Recurrence Relations

- 1. Determine the recurrence relation. What is/are the base case(s)?
- 2. "Expand" the original relation to find an equivalent general expression *in terms of the number of expansions*.
- 3. Find a closed-form expression by setting *the number of expansions* to a value which reduces the problem to a base case

Asymptotic Analysis

- Asymptotic analysis looks at the *order* of the running time of the algorithm
 - > A valuable tool when the input gets "large"
 - Ignores the effects of different machines or different implementations of the same algorithm
 - Intuitively, to find the asymptotic runtime, throw away constants and low-order terms
 - > Linear search is $T(n) = 3n + 2 \in O(n)$
 - > Binary search is $T(n) = 4 \log_2 n + 4 \in O(\log n)$

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - w(f(n)) is the set of all functions asymptotically strictly greater than f(n)
- $\theta(f(n))$ is the set of all functions asymptotically equal ₁₆ to f(n)

Definition of Order Notation

- Upper bound: T(n) = O(f(n)) Big-O Exist positive constants *c* and *n*' such that $T(n) \le c f(n)$ for all $n \ge n'$
- Lower bound: $T(n) = \Omega(g(n))$ Omega Exist positive constants *c* and *n*' such that $T(n) \ge c g(n)$ for all $n \ge n$ '
- Tight bound: $T(n) = \theta(f(n))$ Theta When both hold:

T(n) = O(f(n)) $T(n) = \Omega(f(n))$

Big-O: Common Names

> constant:	O(1)	
› logarithmic:	O(log n)	$(\log_k n, \log n^2 \in O(\log n))$
> linear:	O(n)	
› log-linear:	O(n log n)	
> quadratic:	O(n ²)	
> cubic:	O(n ³)	
> polynomial:	O(n ^k)	(k is a constant)
› exponential:	O(c ⁿ)	(c is a constant > 1)

Perspective: Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
 - › Worst Case
 - Your worst enemy is choosing input
 - > Best Case
 - › Average Case
 - Assumes some probabilistic distribution of inputs
 - > Amortized
 - Average time over many operations

Linked List Queue Data Structure

front

back

```
void enqueue(Object x) {
                                    Object dequeue() {
  if (is empty())
                                       assert(!is empty)
       front = back = new Node(x)
                                       return data = front->data
  else
                                       temp = front
       back - next = new Node(x)
                                       front = front->next
       back = back->next
                                       delete temp
}
                                       return return_data
                                    }
bool is_empty() {
  return front == null
}
```

Brief interlude: Some Definitions:

A <u>Perfect</u> binary tree – A binary tree with all leaf nodes at the same depth. All internal nodes have 2 children.

Heap <u>Structure</u> Property

 A binary heap is a <u>complete</u> binary tree.
 <u>Complete binary tree</u> – binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.
 Examples:

implicit (array) implementation: С Β D Ε F G Η J Κ Α L 1 2 3 4 5 6 7 8 9 10 11 12 13 0

Heap Order Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X.

Heap Operations

- findMin:
- insert(val): percolate up.
- deleteMin: percolate down.

BuildHeap: Floyd's Method

12	5	11	3	10	6	9	4	8	1	7	2	
----	---	----	---	----	---	---	---	---	---	---	---	--

Add elements arbitrarily to form a complete tree. Pretend it's a heap and fix the heap-order property! ~

A Solution: *d*-Heaps

- Each node has d children
- Still representable by array
- Good choices for *d*:
 - (choose a power of two for efficiency)
 - fit one set of children in a cache line
 - fit one set of children on a memory page/disk block

New Heap Operation: Merge

- Given two heaps, merge them into one heap
 - first attempt: insert each element of the smaller heap into the larger.
 runtime:
 - second attempt: concatenate binary heaps' arrays and run buildHeap.

10/23/2007 *runtime:*

Leftist Heaps

Idea:

Focus all heap maintenance work in one small part of the heap

Leftist heaps:

- 1. Most nodes are on the left
- 2. All the merging work is done on the right

Definition: Null Path Length

null path length (npl) of a node *x* = the number of nodes between *x* and a null in its subtree

OR

npl(x) = min distance to a descendant with 0 or 1 children

- *npl*(null) = -1
- *npl*(leaf) = 0
- *npl*(single-child node) = 0

- 1. npl(x) is the height of largest complete subtree rooted at x
- 2. $npl(x) = 1 + min\{npl(left(x)), npl(right(x))\}$ 10/23/2007

Leftist Heap Properties

- Heap-order property
 - parent's priority value is < to childrens' priority values
 - > <u>result</u>: minimum element is at the root
- Leftist property
 - > For every node x, $npl(left(x)) \ge npl(right(x))$
 - <u>result</u>: tree is at least as "heavy" on the left as the right Are leftist trees...

complete? balanced?

Operations on Leftist Heaps

- <u>merge</u> with two trees of total size n: O(log n)
- insert with heap size n: O(log n)
 - > pretend node is a size 1 leftist heap
 - insert by merging original heap with one node
 heap

• deleteMin with heap size n: O(log n)

> nerge left and right subtrees

Skew Heaps

Problems with leftist heaps

- > extra storage for npl
- > extra complexity/logic to maintain and check npl
- > right side is "often" heavy and requires a switch

Solution: skew heaps

- blindly" adjusting version of leftist heaps
- merge always switches children when fixing right path
- <u>amortized time</u> for: merge, insert, deleteMin = O(log
 n)
- > however, worst case time for all three = O(n) 3535

Runtime Analysis: Worst-case and Amortized

- No worst case guarantee on right path length!
- All operations rely on merge

 \Rightarrow worst case complexity of all ops =

- Probably won't get to amortized analysis in this course, but see Chapter 11 if curious.
- Result: *M* merges take time *M* log *n*

10/23/2007

 \Rightarrow amortized complexity of all ops =

Binomial Queue with *n* elements

Binomial Q with *n* elements has a *unique* structural representation in terms of binomial trees!

Properties of Binomial Queue

- At most <u>one</u> binomial tree of any height
- *n* nodes ⇒ binary representation is of size ?
 ⇒ deepest tree has height ?
 ⇒ number of trees is ?

Define: height(forest F) = max_{tree T in F} { height(T)
}

Binomial Q with *n* nodes has height $\Theta(\log n)$

10/23/2007

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests

}

- 2. For *k* from 0 to maxheight {
 - a. $m \leftarrow$ total number of B_k 's in the two BQs.
 - # of 1's b. if m=0: continue; 0 + 0 = 0
 - c. if *m*=1: continue; 1+0=1
 - d. if *m*=2: combine the two B_k 's to form 1+1 = 0+c B_{k+1} 1+1+c = 1+c
 - retain one B_k and e. if *m*=3: combine the other two to form a B_{k+1}

Claim: When this process ends, the forest 10/23/2007 has at most one tree of any height

deleteMin: Example

• Binary tree is Binary Trees

- › a root
- left subtree (maybe empty)
- right subtree (maybe empty)
- Representation:

Binary Tree: Special Cases

Complete Tree

Perfect Tree

Full Tree

More Recursive Tree Calculations: Tree Traversals

A *traversal* is an order for visiting all the nodes of a tree

Three types:

• <u>Pre-order</u>: Root, left subtree, right subtree

(an expression tree)

<u>In-order</u>: Left subtree, root, right subtree

Binary Tree: Some Numbers! For binary tree of height *h*:

- > max # of leaves:
- > max # of nodes:
- > min # of leaves:
- > min # of nodes:

 2^{h} , for perfect tree

 $2^{h+1} - 1$, for perfect tree

1, for "list" tree

h+1, for "list" tree

Average Depth for N nodes?

Binary Search Tree Data Structure

- Structural property
 -) each node has \leq 2 children
 - > result:
 - storage is small
 - operations are simple
 - average depth is small
- Order property
 - all keys in left subtree smaller than root's key
 - all keys in right subtree larger than root's key
 - > result: easy to find any given key
- What must I know about what I store?

Find in BST, Recursive

Runtime:

if (key < root.key)
 return Find(key,</pre>

root.left);
else if (key > root.key)
 return Find(key,

root.right);

else

return root;

Insert(13) Insert(8) Insert(31)

Insertions happen only at the leaves – easy!

Runtime:

Deletion

- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
 - > node has no children (leaf node)
 - > node has one child
 - > node has two children

Deletion – The Two Child Case

- Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees
- Options:
- succ from right subtree: findMin(t.right)
- *pred* from left subtree : findMax(t.left)
 Now delete the original node containing succ or pred
- Leaf or one child case easy!

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with *n* nodes
 - > Average height is O(log *n*)
 - > Worst case height is O(*n*)
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is $O(\log n)$ strong enough!
- 2. is easy to maintain
- not too strong!

The AVL Tree Data Structure Structural properties This is an AVL tree 1. Binary tree property 8 (0,1, or 2 children)2. Heights of left and right subtrees of every node 2 6 differ by at most 1 **Result:** 9 (14)13 Worst case depth of any node is: O(log

n)

AVL trees: find, insert

• AVL find:

> same as BST find.

• AVL insert:

 same as BST insert, *except* may need to "fix" the AVL tree after inserting new value.

Single rotation in general

X < b < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors? ⁵⁴

Double rotation in general

W < b < X < c < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?

Insertion into AVL tree

- 1. Find spot for new key
- 2. Hang new node there with this key
- 3. Search back up the path for imbalance
- 4. If there is an imbalance: Zig-zig
 - case #1: Perform single rotation and exit

Zig-zag

Case #2: Perform double rotation and exit Both rotations keep the subtree height unchanged. Hence only one rotation is sufficient!

Splay Trees

- Blind adjusting version of AVL trees
 - > Why worry about balances? Just rotate anyway!
- <u>Amortized time</u> per operations is O(log *n*)
- Worst case time per operation is O(*n*)
 - > But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question: AVL is to Splay trees as ______ is to _____

Leftish heap : Skew heap

Recall: Amortized Complexity If a sequence of M operations takes O(M f(n)) time, we say the amortized runtime is O(f(n)).

- Worst case time *per operation* can still be large, say O(*n*)
- Worst case time for <u>any</u> sequence of M operations is O(M f(n))

Average time *per operation* for *any* sequence is O(f(*n*))

Amortized complexity is *worst-case* guarantee over *sequences* of operations.

Find/Insert in Splay Trees

- 1. Find or insert a node k
- 2. Splay *k* to the root using: zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

- 1. Helps the new root, *k*
 - o Great if k is accessed again
- 2. And helps many others!
 - o Great if many others on the path are accessed

AVL double rotation

k and its original children

*Is this just two AVL single rotations in a row?

Not quite – we rotate g and p, then p and k

Why does this help?

Same number of nodes helped as hurt. But later rotations help the whole subtree.

60

Relative depth of *p*, Y, Z?

Relative depth of everyone else?

Down 1 levelMuch betterWhy not drop zig-zig and just zig all the way?Zig only helps one child!

Solution: B-Trees

- specialized *M*-ary search trees
- Each **node** has (up to) M-1 keys:
 - subtree between two keys x and y contains leaves with values v such that $x \le v < y$
- Pick branching factor M such that each node takes one full {page, block} of memory

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node) and L = 4(# data items in leaf)

ignore in slides

Note: All leaves at the same depth!

B-Tree Properties [‡]

- > Data is stored at the leaves
- > All leaves are at the same depth and contains between $\lceil L/2 \rceil$ and L data items
- Internal nodes store up to M-1 keys
- Internal nodes have between M/2 and M
 children
- Root (special case) has between 2 and *M* children (or root could be a leaf)

Insertion Algorithm

- 1. Insert the key in its leaf
- 2. If the leaf ends up with L+1 items, overflow!
 - > Split the leaf into two nodes:
 - original with [(L+1)/2]
 items
 - new one with [(L+1)/2]
 items
 - > Add the new child to the parent
 - If the parent ends up with M+1 items, overflow!

This makes the tree deeper!

3. If an internal node ends up with M+1 items, **overflow**!

- > Split the node into two nodes:
 - original with [(M+1)/2]
 items
 - new one with [(M+1)/2] items
- > Add the new child to the parent
- If the parent ends up with M+1 items, overflow!
- 4. Split an overflowed root in two and hang the new nodes under a new root

Deletion Algorithm

- 1. Remove the key from its leaf
- 2. If the leaf ends up with fewer than **L**/2 items, **underflow**!
 - Adopt data from a sibling; update the parent
 - If adopting won't work, delete node and merge with neighbor
 - If the parent ends up with fewer than $\lceil M/2 \rceil$ items, **underflow**!

Deletion Slide Two

- 3. If an internal node ends up with fewer than $\lceil m/2 \rceil$ items, **underflow**!
 - Adopt from a neighbor; update the parent
 - If adoption won't work, merge with neighbor
 - > If the parent ends up with fewer than $\lceil m/2 \rceil$ items, **underflow**!
- 4. If the root ends up with only one child, make the child the new root of the tree

This reduces the height of the tree!