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B-Trees

Weliss Sec. 4.7
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Trees so far

e BST

e AVL

e Splay



AVL trees

Suppose we have 100 million items (100,000,000):

e Depth of AVL Tree

e Number of Disk Accesses



M-ary Search Tree
Q.

e Maximum branching factor of M
e Complete tree has height =

# disk accesses for find:

Runtime of find:



Solution: B-Trees

 specialized M-ary search trees

e Each node has (up to) M-1 keys:
— subtree between two keys x and y contains

leaves with values v such that

XSVv<y

 Pick branching factor M
such that each node
takes one full
{page, block}
of memory

xX<3

3x<T

3

12

21

<x<12

2<x<21

21<x



B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
e All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

e The tree structure can be loaded into memory
Irrespective of data object size

o Data actually resides in disk



B-Tree: Example

B-Tree withM = 4 (# pointers in internal node)

andL = 4 (# data items in leaf)
1040
3 1520130 50
5 10[11[12 2025|126 4042
X(f\ 315169 15[17 301323336 50/60[70
Data objects, that IlI Note: All leaves at the same depth!

Ignore in slides



B-Tree Properties *

— Data Is stored at the leaves

— All leaves are at the same depth and contains between
[L/2]and L data items

— Internal nodes store up to M-1 keys

— Internal nodes have between | M/2 | and M children

— Root (special case) has between 2 and M children (or
root could be a leaf)

*These are technically B+-Trees 10



Example, Again

B-TreewithM = 4

and L = 4
10/40
3 15[20[30 50
1(2 10|11(12 2025|126 40(42
3[5[6(9 15[17 30[32|33[36 50[60

(Only showing keys, but leaves also have data!) 1



Building a B-Tree

Insert(3) Insert(14)

The empty
B-Tree

M=3L =2

Now, Insert(1)?
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14

=St Splitting the Root
T0oo many
keys in a leaf!
1314
Insert(1) | | i | Andcreate
3114 | —Z- | anew root
1[3] [14

So, split the leaf.

14

13




M=3L=2

Overflowing leaves

14

Insert(59)

14

Insert(26)

Too many
keys in a leaf!

14

14

59

14

29

R

14{26] [59

sSo, split the leaf.

And add

14

26

59

a new child

14




M=3L=2

Propagating Splits

14

29

14(26

29

Add new

\

5

child

Split the leaf, but no space in parent!

14|59
Insert(5)
1|31 |14]26] |59
113
14
5 59 : Create a
new root
11315 14|26||59

5114

A

1

3

5

14

26| |99

1
iR

So, split the node.



Insertion Algorithm

Insert the key in its leaf 3. If an internal node ends up
If the leaf ends up with L+1 with M+1 items, overflow!
items, overflow! — Split the node into two nodes:

— Split the leaf into two nodes: + original with [ (M+1)/2]items
« original with [ (L+1)/2]items * NEWOone W'th_L(MJfl)/ZJ items
e new one with L (L+1) /2] items — Add the new child to the parent

— Add the new child to the parent — If the parent e”dls up with M+1
—  If the parent ends up with M+1 items, overflow!
items, overflow!

4. Split an overflowed root in two
and hang the new nodes under
f a new root

This makes the tree deeper!

16



M =3

L

: After More Routine Inserts

14

59

Insert(89)

5 14

26|59

Insert(

79)

14

99|89

14

26

59(79

89
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M=3L=2

1. Delete item from leaf

2. Update keys of ancestors if necessary

Deletion

14

S 99|89

Delete(59)

14

7989

113]|5 14{26/159]79]|89

14

26

79

89

What could go wrong?

18




M =3

L

Deletion and Adoption

A leaf has too few keys!

14

7989

14

26

79

89

Delete(5)

14

7989

14

26

79

89

So, borrow from a sibling

14

7989

26

79

89

19




Does Adoption Always Work?

« What If the sibling doesn’t have enough for you to
borrow from?

e.g. you have [ L/2 -1 and sibling has [ L/2 | ?

20



M=3L=2

Deletion and Merging

A leaf has too few keys!

14

7989

26

79

89

But now an internal node

has too few subtrees!

14
Delete(3) 5 -l
1 14]26||79] |89
And no sibling with surplus!
14
N . S0, delete
the leaf
' 21
1 14/26((79] (89




=31 =2Deletion with Propagation

(More Adoption)
7 79
79/89 Adopta - 89
neighbor <N
1 1426)[79] ][89 1412611911189

22




M=3L=2
A Bit More Adoption
79
" o Delete(1)
(adopt a
sibling)
1] ||14]26] |79] (89

79

26

89

14

26

79

89

23




M =

L, a2

Pulllng out the ROOt 4 jeaf has too few keys!

And no sibling with surplus!

26

79

89

Delete(26)

14

26

79

89

But now the root

has just one subtree!

14

7989

A node has too few subtrees
and no neighbor with surplus!

Delete

79

89

So, delete

14

79

89

79

89

" the node

79

14

89

the leaf:
merge

79

89
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M

has just one subtree!

L = 2

Pulllng out the Root (continued)

The root

14

7989

Simply make
the one child
the new root!

79

89

79

89

14

79

89
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Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer

than [L/2] items, underflow!

— Adopt data from a sibling;
update the parent

— If adopting won’t work, delete
node and merge with neighbor

— If the parent ends up with
fewer than [M/2]items,
underflow!

26



Deletion Slide Two

3. If an internal node ends up with
fewer than [M/2 ] items, underflow!

— Adopt from a neighbor;
update the parent

— If adoption won’t work,
merge with neighbor

— If the parent ends up with fewer than

[M/2] items, underflow! This reduces the

height of the tree!
4. If the root ends up with only one

child, make the child the new root
of the tree 21




Thinking about B-Trees

B-Tree insertion can cause (expensive) splitting and
propagation

B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare if M and L are large

(Why?)

IfM = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

28



Tree Names You Might Encounter

FYI:

— B-TreeswithM = 3,L = X are called 2-3 trees
* Nodes can have 2 or 3 keys

— B-TreeswithM = 4, L = Xxare called 2-3-4 trees
* Nodes can have 2, 3, or 4 keys

29



