CSE 326: Data Structures
B-Trees

James Fogarty
Autumn 2007
Lecture 11

B-Trees

Weliss Sec. 4.7

SRAM
8KB - 4MB

DRAM
up to 10GB

CPU

(has registers)

Cache

Main Memory

TIme to access
(conservative)

1 ns per instruction

Cache

2-10 ns

Main Memory

many GB

Disk

40-100 ns
— Disk
/
a few
milliseconds

(5-10 Million ns)

3

Trees so far

e BST

e AVL

e Splay

AVL trees

Suppose we have 100 million items (100,000,000):

e Depth of AVL Tree

e Number of Disk Accesses

M-ary Search Tree
Q.

e Maximum branching factor of M
e Complete tree has height =

disk accesses for find:

Runtime of find:

Solution: B-Trees

 specialized M-ary search trees

e Each node has (up to) M-1 keys:
— subtree between two keys x and y contains

leaves with values v such that

XSVv<y

 Pick branching factor M
such that each node
takes one full
{page, block}
of memory

xX<3

3x<T

3

12

21

<x<12

2<x<21

21<x

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
e All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

e The tree structure can be loaded into memory
Irrespective of data object size

o Data actually resides in disk

B-Tree: Example

B-Tree withM = 4 (# pointers in internal node)

andL = 4 (# data items in leaf)
1040
3 1520130 50
5 10[11[12 2025|126 4042
X(f\ 315169 15[17 301323336 50/60[70
Data objects, that IlI Note: All leaves at the same depth!

Ignore in slides

B-Tree Properties *

— Data Is stored at the leaves

— All leaves are at the same depth and contains between
[L/2]and L data items

— Internal nodes store up to M-1 keys

— Internal nodes have between | M/2 | and M children

— Root (special case) has between 2 and M children (or
root could be a leaf)

*These are technically B+-Trees 10

Example, Again

B-TreewithM = 4

and L = 4
10/40
3 15[20[30 50
1(2 10|11(12 2025|126 40(42
3[5[6(9 15[17 30[32|33[36 50[60

(Only showing keys, but leaves also have data!) 1

Building a B-Tree

Insert(3) Insert(14)

The empty
B-Tree

M=3L =2

Now, Insert(1)?

12

14

=St Splitting the Root
T0oo many
keys in a leaf!
1314
Insert(1) | | i | Andcreate
3114 | —Z- | anew root
1[3] [14

So, split the leaf.

14

13

M=3L=2

Overflowing leaves

14

Insert(59)

14

Insert(26)

Too many
keys in a leaf!

14

14

59

14

29

R

14{26] [59

sSo, split the leaf.

And add

14

26

59

a new child

14

M=3L=2

Propagating Splits

14

29

14(26

29

Add new

\

5

child

Split the leaf, but no space in parent!

14|59
Insert(5)
1|31 |14]26] |59
113
14
5 59 : Create a
new root
11315 14|26||59

5114

A

1

3

5

14

26| |99

1
iR

So, split the node.

Insertion Algorithm

Insert the key in its leaf 3. If an internal node ends up
If the leaf ends up with L+1 with M+1 items, overflow!
items, overflow! — Split the node into two nodes:

— Split the leaf into two nodes: + original with [(M+1)/2]items
« original with [(L+1)/2]items * NEWOone W'th_L(MJfl)/ZJ items
e new one with L (L+1) /2] items — Add the new child to the parent

— Add the new child to the parent — If the parent e”dls up with M+1
— If the parent ends up with M+1 items, overflow!
items, overflow!

4. Split an overflowed root in two
and hang the new nodes under
f a new root

This makes the tree deeper!

16

M =3

L

: After More Routine Inserts

14

59

Insert(89)

5 14

26|59

Insert(

79)

14

99|89

14

26

59(79

89

17

M=3L=2

1. Delete item from leaf

2. Update keys of ancestors if necessary

Deletion

14

S 99|89

Delete(59)

14

7989

113]|5 14{26/159]79]|89

14

26

79

89

What could go wrong?

18

M =3

L

Deletion and Adoption

A leaf has too few keys!

14

7989

14

26

79

89

Delete(5)

14

7989

14

26

79

89

So, borrow from a sibling

14

7989

26

79

89

19

Does Adoption Always Work?

« What If the sibling doesn’t have enough for you to
borrow from?

e.g. you have [L/2 -1 and sibling has [L/2 | ?

20

M=3L=2

Deletion and Merging

A leaf has too few keys!

14

7989

26

79

89

But now an internal node

has too few subtrees!

14
Delete(3) 5 -l
1 14]26||79] |89
And no sibling with surplus!
14
N . S0, delete
the leaf
' 21
1 14/26((79] (89

=31 =2Deletion with Propagation

(More Adoption)
7 79
79/89 Adopta - 89
neighbor <N
1 1426)[79]][89 1412611911189

22

M=3L=2
A Bit More Adoption
79
" o Delete(1)
(adopt a
sibling)
1] ||14]26] |79] (89

79

26

89

14

26

79

89

23

M =

L, a2

Pulllng out the ROOt 4 jeaf has too few keys!

And no sibling with surplus!

26

79

89

Delete(26)

14

26

79

89

But now the root

has just one subtree!

14

7989

A node has too few subtrees
and no neighbor with surplus!

Delete

79

89

So, delete

14

79

89

79

89

" the node

79

14

89

the leaf:
merge

79

89

24

M

has just one subtree!

L = 2

Pulllng out the Root (continued)

The root

14

7989

Simply make
the one child
the new root!

79

89

79

89

14

79

89

25

Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer

than [L/2] items, underflow!

— Adopt data from a sibling;
update the parent

— If adopting won’t work, delete
node and merge with neighbor

— If the parent ends up with
fewer than [M/2]items,
underflow!

26

Deletion Slide Two

3. If an internal node ends up with
fewer than [M/2] items, underflow!

— Adopt from a neighbor;
update the parent

— If adoption won’t work,
merge with neighbor

— If the parent ends up with fewer than

[M/2] items, underflow! This reduces the

height of the tree!
4. If the root ends up with only one

child, make the child the new root
of the tree 21

Thinking about B-Trees

B-Tree insertion can cause (expensive) splitting and
propagation

B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare if M and L are large

(Why?)

IfM = L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

28

Tree Names You Might Encounter

FYI:

— B-TreeswithM = 3,L = X are called 2-3 trees
* Nodes can have 2 or 3 keys

— B-TreeswithM = 4, L = Xxare called 2-3-4 trees
* Nodes can have 2, 3, or 4 keys

29

