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AVL Trees Revisited

• Balance condition:
Left and right subtrees of every node
have heights differing by at most 1

– Strong enough : Worst case depth is O(log n)
– Easy to maintain : one single or double rotation

• Guaranteed O(log n) running time for
– Find ?
– Insert ?
– Delete ?
– buildTree ? Θ(n log n)
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Single and Double Rotations
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AVL Trees Revisited

• What extra info did we maintain in each node?

• Where were rotations performed?

• How did we locate this node?
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Other Possibilities?
• Could use different balance conditions, different ways to 

maintain balance, different guarantees on running time, …

• Why aren’t AVL trees perfect?

• Many other balanced BST data structures
– Red-Black trees
– AA trees
– Splay Trees
– 2-3 Trees
– B-Trees
– …

Extra info, complex logic to
detect imbalance, recursive
bottom-up implementation
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Splay Trees

• Blind adjusting version of AVL trees
– Why worry about balances?  Just rotate anyway!

• Amortized time per operations is O(log n)
• Worst case time per operation is O(n)

– But guaranteed to happen rarely

Insert/Find always rotate node to the root!

SAT/GRE Analogy question:
AVL is to Splay trees as ___________ is to __________

Leftish heap : Skew heap
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Recall: Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).

Amortized complexity is   worst-case guarantee over
sequences of operations.

• Worst case time per operation can still be large, say O(n)

• Worst case time for any sequence of M operations is O(M f(n))

Average time per operation for any sequence is O(f(n))
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Recall: Amortized Complexity

• Is amortized guarantee any weaker than worstcase?

• Is amortized guarantee any stronger than averagecase?

• Is average case guarantee good enough in practice?

• Is amortized guarantee good enough in practice?

Yes, it is only for sequences

Yes, guarantees no bad sequences

No, adversarial input, 
bad day, …

Yes, again, no bad sequences



9

The Splay Tree Idea
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If you’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

3
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1. Find or insert a node k
2. Splay k to the root using:

zig-zag, zig-zig, or plain old zig rotation

Why could this be good?? 

1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Find/Insert in Splay Trees
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Splaying node k to the root:
Need to be careful!

One option (that we won’t use) is to repeatedly use AVL single 
rotation until k becomes the root:  (see Section 4.5.1 for details)
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Splaying node k to the root:
Need to be careful!

What’s bad about this process?
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r is pushed almost as low as k was
Bad seq: find(k), find(r), find(…), …
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Splay: Zig-Zag*
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AVL double rotation

Helps those in blue
Hurts those in red

Which nodes improve depth?

k and its original children
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Splay: Zig-Zig*
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*Is this just two AVL single rotations in a row?

Not quite – we rotate g and p, then p and k

Why does this help?
Same number of nodes helped as hurt. But later rotations help the whole subtree.



15

Special Case for Root: Zig
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Down 1 level

Relative depth of p, Y, Z? Relative depth of everyone else?

Much better
Why not drop zig-zig and just zig all the way?

Zig only helps one child!
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Splaying Example: Find(6)
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Think of as if 
created by inserting 
6,5,4,3,2,1 – each 
took constant time 
– a LOT of savings 
so far to amortize 
those bad accesses 
over
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Still Splaying 6
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Finally…
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Another Splay: Find(4)

Find(4)
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Example Splayed Out
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But Wait…

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(log n) guarantee?

That still holds, though we must take
into account the previous steps used to create
this tree.  In fact, a splay tree, by construction,

will never look like the example we started with!
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Why Splaying Helps

• If a node n on the access path is at depth d before 
the splay, it’s at about depth d/2 after the splay

• Overall, nodes which are low on the access path 
tend to move closer to the root

• Splaying gets amortized O(log n) performance. 
(Maybe not now, but soon, and for the rest of the operations.)
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Practical Benefit of Splaying

• No heights to maintain, no imbalance to check for
– Less storage per node, easier to code

• Data accessed once, is often soon accessed again
– Splaying does implicit caching by bringing it to the root
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Splay Operations: Find

• Find the node in normal BST manner
• Splay the node to the root

– if node not found, splay what would have been its parent

What if we didn’t splay?

Amortized guarantee fails!
Bad sequence: find(leaf k), find(k), find(k), …
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Splay Operations: Insert

• Insert the node in normal BST manner
• Splay the node to the root

What if we didn’t splay?

Amortized guarantee fails!
Bad sequence: insert(k), find(k), find(k), …
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Splay Operations: Remove

find(k)

L R

k

L R

> k< k

delete k

Now what?

Everything else splayed, so we’d better do that for remove
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Join
Join(L, R): 

given two trees such that (stuff in L) < (stuff in R), merge them:

Splay on the maximum element in L, then attach R

L R R

L

Similar to BST delete – find max = find element with no right child

Does this work to join any two trees?
No, need L < R

splay

max
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Delete Example
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Splay Tree Summary

• All operations are in amortized O(log n) time

• Splaying can be done top-down; this may be better because:
– only one pass
– no recursion or parent pointers necessary
– we didn’t cover top-down in class

• Splay trees are very effective search trees
– Relatively simple
– No extra fields required
– Excellent locality properties: 

frequently accessed keys are cheap to find

What happens to node that never get accessed?
(tend to drop to the bottom)

Like what?  Skew heaps! (don’t need to wait)
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