
1

CSE 326: Data Structures
AVL Trees

James Fogarty
Autumn 2007

Lecture 9

2

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n) – strong enough!
2. is easy to maintain – not too strong!

3

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes
2. Left and right subtrees of the root

have equal height
3. Left and right subtrees of every node

have equal number of nodes
4. Left and right subtrees of every node

have equal height

4

The AVL Balance Condition
AVL balance property:

Left and right subtrees of every node
have heights differing by at most 1

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
– Using single and double rotations

Adelson-Velskii and Landis

5

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties
1. Binary tree property

(0,1, or 2 children)
2. Heights of left and right

subtrees of every node
differ by at most 1

Result:
Worst case depth of any

node is: O(log n)

Ordering property
– Same as for BST

15

This is an
AVL tree

6

111

84

6

3

1171

84

6

2

5

AVL trees or not?

10 12

7

7

Proving Shallowness Bound

121062

115

8

14137 9

15

Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = O(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes (12)

Trees of height h = 1, 2, 3 ….

8

Testing the Balance Property

2092

155

10

30177

NULLs have
height -1

We need to be able to:

1. Track Balance

2. Detect Imbalance

3. Restore Balance

9

An AVL Tree

20

92 15

5

10

30

177

0

0 0

011

2 2

3 10
3

data

height

children

Track height at all times. Why?

10

AVL trees: find, insert
• AVL find:

– same as BST find.
• AVL insert:

– same as BST insert, except may need to “fix”
the AVL tree after inserting new value.

11

AVL tree insert
Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the
1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases 1 & 4 are solved by a single rotation.
Cases 2 & 3 are solved by a double rotation.

12

Bad Case #1
Insert(6)
Insert(3)
Insert(1)

Where is AVL property violated?

13

Fix: Apply Single Rotation

3

1 6
00

1
6

3

1 0

1

2

Single Rotation:
1. Rotate between x and child

AVL Property violated at this node (x)

14

Single rotation in general
a

Z
Y

b

Xh h
h

h ≥ -1

a

ZY

b

Xh+1 h h

X < b < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?

15

Bad Case #2
Insert(1)
Insert(6)
Insert(3)

16

Fix: Apply Double Rotation

3

1 6
00

1

3

6

1

0

1

2

6

3

1

0

1

2

Intuition: 3 must become root

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

17

Double rotation in general
a

Z

b

W

c

X Yh-1

h

h h -1

a

Z

b

W

c

X Yh-1 hh h

h ≥ 0

W < b <X < c < Y < a < Z

Height of tree before? Height of tree after? Effect on Ancestors?

18

Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

19

Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5

20

Imbalance at node X

Single Rotation
1. Rotate between x and child

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

21

9
5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values
would cause the tree to need a:

Single and Double Rotations:

13

30

22

Insertion into AVL tree
1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:

case #1: Perform single rotation and exit

case #2: Perform double rotation and exit

Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

Zig-zig

Zig-zag

23

Easy Insert

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced? No

24

Hard Insert (Bad Case #1)

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

Imbalance

Zig-zig

How to fix? Single rotate

Unbalanced? Yes, at 15

25

Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0

26

Hard Insert (Bad Case #2)

Insert(18)

2092

155

10

30173

12
1

0

100

2 2

3

00

Zig-zag

How to fix? Double rotate

Imbalance

Unbalanced? Yes, at 15

27

Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0

28

Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

Still unbalanced.
But like zig-zig tree!

29

Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

0

110

2 2

3

00
12

0
18

30

Insert into an AVL tree: 5, 8, 9, 4, 2, 7, 3, 1

