
10/11/2007 1

CSE 326: Data Structures
Binary Search Trees

James Fogarty
Autumn 2007

Lecture 8

10/11/2007 2

Today’s Outline

• Dictionary ADT / Search ADT
• Quick Tree Review
• Binary Search Trees

10/11/2007 3

ADTs Seen So Far

• Stack
– Push
– Pop

• Queue
– Enqueue
– Dequeue

Then there is decreaseKey…

• Priority Queue
– Insert
– DeleteMin

Need pointer! Why?
Because find not efficient.

10/11/2007 4

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)
– Find (key)
– Remove (key)

The Dictionary ADT is also
called the “Map ADT”

• jfogarty
James
Fogarty
CSE 666

• phenry
Peter
Henry
CSE 002

• boqin
Bo
Qin
CSE 002

insert(jfogarty, ….)

find(boqin)
• boqin

Bo, Qin, …

10/11/2007 5

A Modest Few Uses

• Sets
• Dictionaries
• Networks : Router tables
• Operating systems : Page tables
• Compilers : Symbol tables

Probably the most widely used ADT!

10/11/2007 6

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

What limits the performance?

Θ(1) Θ(n) Θ(n)

Θ(1) Θ(n) Θ(n)

log n + n Θ(log n) log n + n

Time to move elements, can we mimic BinSearch with BST?

SO CLOSE!

10/11/2007 7

Tree Calculations
Recall: height is max number

of edges from root to a leaf

Find the height of the tree...

t

runtime:
Θ(N) (constant time for each node;

each node visited twice)

height(t) = 1 + max {height(t.left),
height(t.right)}

10/11/2007 8

Tree Calculations Example

A

E

B

D F

C

G

IH

KJ L

M

L

N

How high is this tree?

height(B) = 1
height(C) = 4

so height(A) = 5

10/11/2007 9

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

10/11/2007 10

Inorder Traversal

void traverse(BNode t){
if (t != NULL)

traverse (t.left);
process t.element;
traverse (t.right);

}
}

10/11/2007 11

Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty)
– right subtree (maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data
right

pointer
left

pointer

10/11/2007 12

Binary Tree: Representation

A
right

pointer
left

pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

10/11/2007 13

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

10/11/2007 14

Binary Tree: Some Numbers!
For binary tree of height h:

– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

Average Depth for N nodes?

2h, for perfect tree

2h+1 – 1, for perfect tree

1, for “list” tree

h+1, for “list” tree

10/11/2007 15

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
Comparison, equality testing

10/11/2007 16

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREES?

7

15All children must
obey order

10/11/2007 17

Find in BST, Recursive
Node Find(Object key,

Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,

root.left);
else if (key > root.key)
return Find(key,

root.right);
else
return root;

}

2092

155

10

307 17

Runtime:

10/11/2007 18

Find in BST, Iterative

Node Find(Object key,
Node root) {

while (root != NULL &&
root.key != key) {

if (key < root.key)
root = root.left;

else
root = root.right;

}

return root;
}

2092

155

10

307 17

Runtime:

10/11/2007 19

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves – easy!

10/11/2007 20

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into

an initially empty BST.
Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc.

Θ(n2)

Θ(n2)

5, 3, 7, 2, 1, 6, 8, 9 better: n log n

10/11/2007 21

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17

10/11/2007 22

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

10/11/2007 23

Lazy Deletion

Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for “deleted” flag
– many lazy deletions = slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

10/11/2007 24

Non-lazy Deletion
• Removing an item disrupts the tree structure.
• Basic idea: find the node that is to be removed.

Then “fix” the tree so that it is still a binary search
tree.

• Three cases:
– node has no children (leaf node)
– node has one child
– node has two children

10/11/2007 25

Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)

10/11/2007 26

Deletion – The One Child Case

2092

155

10

307

Delete(15)

10/11/2007 27

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

A value guaranteed to be
between the two subtrees!
- succ from right subtree
- pred from left subtree

10/11/2007 28

Deletion – The Two Child Case
Idea: Replace the deleted node with a value

guaranteed to be between the two child subtrees

Options:
• succ from right subtree: findMin(t.right)
• pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred
• Leaf or one child case – easy!

10/11/2007 29

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted

10/11/2007 30

Balanced BST
Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is O(log n)
– Worst case height is O(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is O(log n) – strong enough!
2. is easy to maintain – not too strong!

10/11/2007 31

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Too weak!
Do height mismatch example

Too weak!
Do example where there’s
a left chain and a right chain,
no other nodes

10/11/2007 32

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

Too strong!
Only perfect trees

Too strong!
Only perfect trees

