CSE 326: Data Structures Binomial Queues

Peter Henry
on behalf of James Fogarty
Autumn 2007

Yet Another Data Structure: Binomial Queues

- Structural property
 - Forest of binomial <u>trees</u> with at most one tree of any height

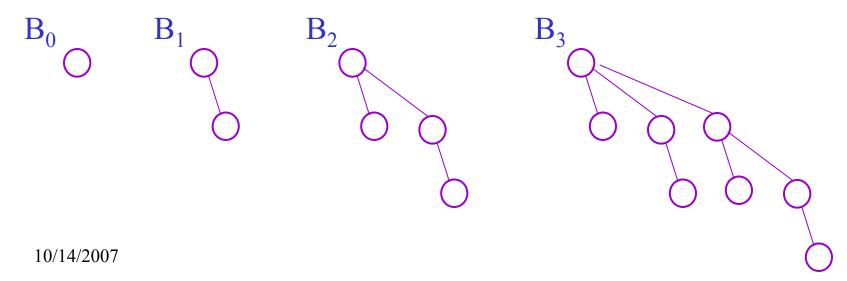
What's a forest?

What's a binomial tree?

- Order property
 - Each binomial <u>tree</u> has the heap-order property

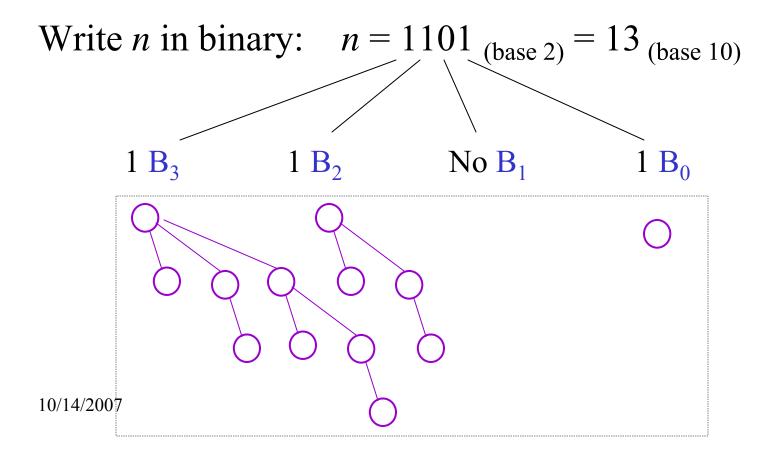
The Binomial Tree, B_h

- B_h has height h and exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$
 - Hence the name; we will *not* use this last property



Binomial Queue with *n* elements

Binomial Q with *n* elements has a *unique* structural representation in terms of binomial trees!



Properties of Binomial Queue

• At most one binomial tree of any height

```
• n \text{ nodes} \Rightarrow \text{ binary representation is of size } ?
```

⇒ deepest tree has height?

 \Rightarrow number of trees is?

Define: height(forest F) = max_{tree T in F} { height(T) }

Binomial Q with n nodes has height $\Theta(\log n)$

Operations on Binomial Queue

- Will again define *merge* as the base operation
 - insert, deleteMin, buildBinomialQ will use merge

• Can we do increaseKey efficiently? decreaseKey?

• What about findMin?

Merging Two Binomial Queues

Essentially like adding two binary numbers!

- 1. Combine the two forests
- 2. For *k* from 0 to maxheight {

```
a. m \leftarrow \text{total number of } B_k's in the two BQs

b. if m=0: continue;

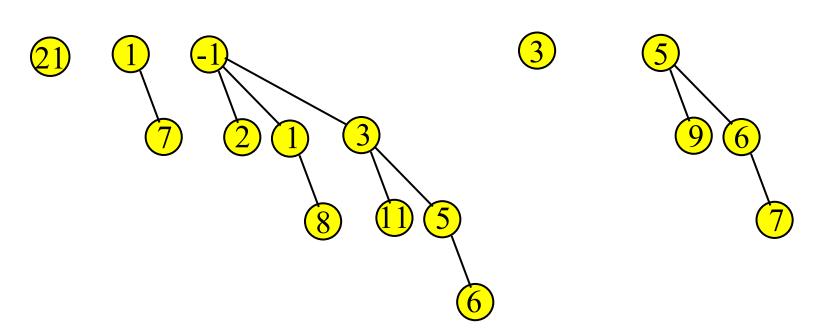
c. if m=1: continue;

d. if m=2: combine the two B_k's to form a B_{k+1}

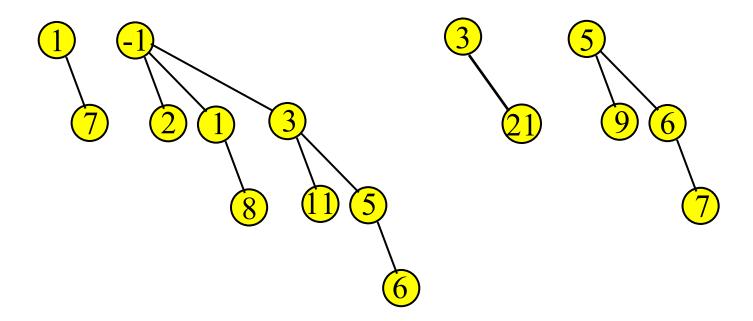
e. if m=3: retain one B_k and combine the other two to form a B_{k+1}
```

Claim: When this process ends, the forest has at most one tree of any height

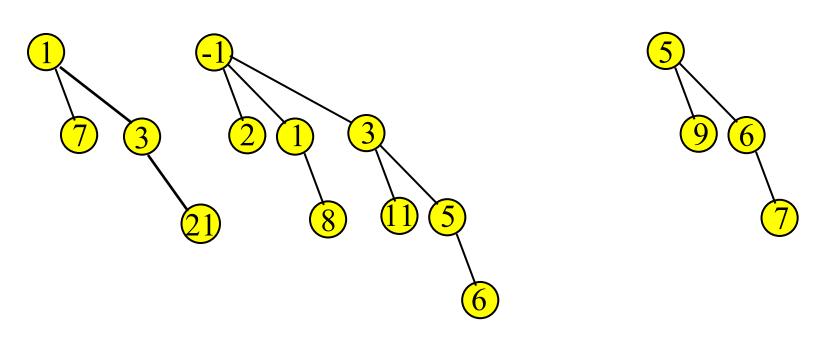
H1: H2:



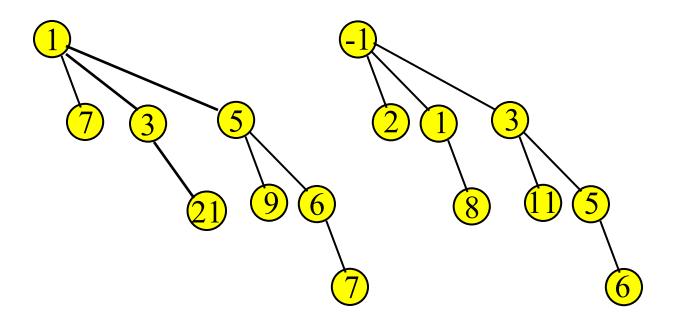
H1: H2:



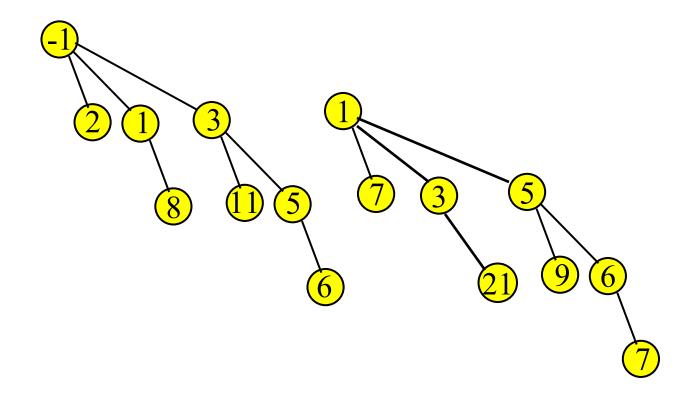
H1: H2:



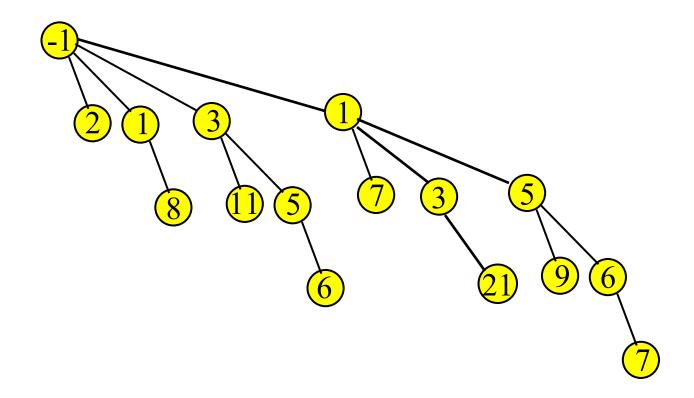
H1: H2:



H1: H2:



H1: H2:



Complexity of Merge

Constant time for each height Max number of heights is: log *n*

 \Rightarrow worst case running time = $\Theta($

Insert in a Binomial Queue

Insert(*x*): Similar to leftist or skew heap

```
runtime
```

Worst case complexity: same as merge O()

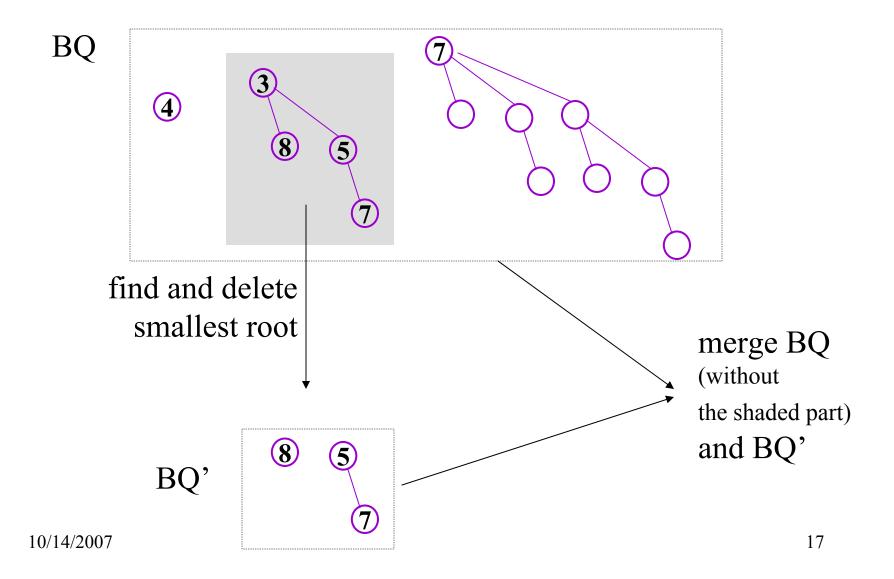
Average case complexity: O(1)

Why?? Hint: Think of adding 1 to 1101

deleteMin in Binomial Queue

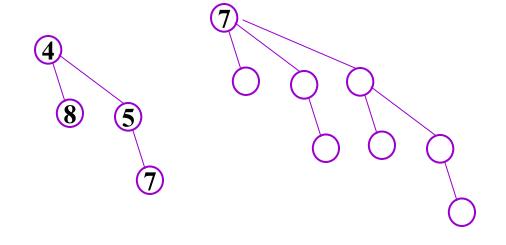
Similar to leftist and skew heaps....

deleteMin: Example



deleteMin: Example

Result:



runtime:

