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Outline

• Announcements
• Leftist Heaps
• Skew Heaps (if there’s time)

– Reading: Weiss, Ch. 6
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Announcements

• Written HW #2 – out now, due Friday
• Project #1 due Wednesday at midnight
• Project #2 Phase A out now

– Can work in pairs; start figuring out who you’d 
like to work with or whether you want to go alone

– Let us know by Friday, Oct 12
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New Heap Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller 

heap into the larger. 
runtime:

– second attempt: concatenate binary heaps’
arrays and run buildHeap.
runtime:
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Leftist Heaps

Idea: 
Focus all heap maintenance work in one 
small part of the heap

Leftist heaps:
1. Most nodes are on the left
2. All the merging work is done on the right
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null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children 

Definition: Null Path Length

• npl(null) = -1
• npl(leaf) = 0
• npl(single-child node) = 0

000

0?1
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Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0
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Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))
– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete? 
balanced?
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Are These Leftist?
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Every subtree of a leftist 
tree is leftist!



10/14/2007 9

Right Path in a Leftist Tree is Short (#1)
Claim: The right path is as short as any in the tree.
Proof: (By contradiction)

R

x

L
D2

D1

Pick a shorter path:   D1 < D2
Say it diverges from right path at x

npl(L) ≤ D1-1   because of the path of 
length D1-1 to null

npl(R) ≥ D2-1   because every node on
right path is leftist

Leftist property at x violated!
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Right Path in a Leftist Tree is Short (#2)
Claim: If the right path has r nodes, then the tree has 

at least
2r-1 nodes.

Proof: (By induction)
Base case          : r=1. Tree has at least 21-1 = 1 node
Inductive step  : assume true for r’< r.   Prove for tree with right 

path at least r.
1. Right subtree: right path of r-1 nodes

⇒ 2r-1-1 right subtree nodes (by induction)
2. Left subtree:   also right path of length at least r-1 (by previous 
slide) ⇒ 2r-1-1 left subtree nodes (by induction)

Total tree size: (2r-1-1) + (2r-1-1) + 1 = 2r-1
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Why do we have the leftist property?

Because it guarantees that:
• the right path is really short compared to 

the number of nodes in the tree
• A leftist tree of N nodes, has a right path of 

at most lg (N+1) nodes

Idea – perform all work on the right path
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Merge two heaps (basic idea)

• Put the smaller root as the new root,
• Hang its left subtree on the left.
• Recursively merge its right subtree and the 

other tree.
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Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two (distinct) 
leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1
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Merge Continued
a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

If npl(R’) > npl(L1)

runtime:
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Let’s do an example, but first…
Other Heap Operations

• insert ?

• deleteMin ?
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Operations on Leftist Heaps
• merge with two trees of total size n: O(log n)
• insert with heap size n: O(log n)

– pretend node is a size 1 leftist heap
– insert by merging original heap with one node heap

• deleteMin with heap size n: O(log n)
– remove and return root
– merge left and right subtrees

merge

merge
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Leftest Merge Example
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Sewing Up the Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

Done?



10/14/2007 19

Finally…
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Leftist Heaps: Summary

Good
•
•

Bad
•
•
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Random Definition:
Amortized Time

am·or·tized time:
Running time limit resulting from “writing off” expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time, 
amortized time per operation is O(log N)

Difference from average time:
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Skew Heaps
Problems with leftist heaps

– extra storage for npl
– extra complexity/logic to maintain and check npl 
– right side is “often” heavy and requires a switch

Solution: skew heaps
– “blindly” adjusting version of leftist heaps
– merge always switches children when fixing right path
– amortized time for: merge, insert, deleteMin = O(log n)
– however, worst case time for all three = O(n)
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Merging Two Skew Heaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Only one step per iteration, with children always switched
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Example
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Skew Heap Code
void merge(heap1, heap2) {
case {

heap1 == NULL: return heap2;
heap2 == NULL: return heap1;
heap1.findMin() < heap2.findMin():

temp = heap1.right;
heap1.right = heap1.left;
heap1.left = merge(heap2, temp);
return heap1;

otherwise:
return merge(heap2, heap1);

}
}
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Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!
• All operations rely on merge

⇒ worst case complexity of all ops = 
• Probably won’t get to amortized analysis in 

this course, but see Chapter 11 if curious.
• Result: M merges take time M log n

⇒ amortized complexity of all ops = 
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Comparing Heaps
• Binary Heaps

• d-Heaps

• Leftist Heaps

• Skew Heaps

Still room for improvement! (Where?)


