
10/2/2007 1

CSE 326: Data Structures

Priority Queues – Binary Heaps

James Fogarty
Autumn 2007

Lecture 4

10/2/2007 2

Administrative

• HW1 due beginning of class Friday

10/2/2007 3

Recall Queues

• FIFO: First-In, First-Out

• Some contexts where this seems right?

• Some contexts where some things should be
allowed to skip ahead in the line?

10/2/2007 4

Queues that Allow Line Jumping
• Need a new ADT
• Operations: Insert an Item,

Remove the “Best” Item

insert deleteMin

6 2
15 23

12 18
45 3 7

10/2/2007 5

Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert
– deleteMin

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority value
than y, x will be deleted before y

10/2/2007 6

Applications of the Priority Queue

• Select print jobs in order of decreasing length
• Forward packets on routers in order of urgency
• Select most frequent symbols for compression
• Sort numbers, picking minimum first

• Anything greedy

10/2/2007 7

Potential Implementations

O(1)*O(n)Sorted list (Array)

O(n)O(1)Unsorted list (Linked-List)

O(1)O(n)Sorted list (Linked-List)

O(n)O(1)Unsorted list (Array)

deleteMininsert

10/2/2007 8

Recall From Lists, Queues, Stacks

• Use an ADT that corresponds to your needs

• The right ADT is efficient, while an overly
general ADT provides functionality you
aren’t using, but are paying for anyways

• Heaps provide O(log n) worst case for both
insert and deleteMin, O(1) average insert

10/2/2007 9

Binary Heap Properties

1. Structure Property
2. Ordering Property

10/2/2007 10

Tree Review
A

E

B

D F

C

G

IH

LJ MK N

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):

Tree T

10/2/2007 11

More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

depth(B):

height(G):

degree(B):

branching factor(T):

Tree T

10/2/2007 12

Brief interlude: Some Definitions:
A Perfect binary tree – A binary tree with all

leaf nodes at the same depth. All internal
nodes have 2 children.

2592
215

11

307 101 3

16

13 19 22

height h
2h+1 – 1 nodes
2h – 1 non-leaves
2h leaves

10/2/2007 13

Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is

completely filled, with the possible exception of
the bottom level, which is filled left to right.

Examples:

10/2/2007 14

Representing Complete
Binary Trees in an Array

GED
CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210
LKJIHGFEDCBA

implicit (array) implementation:

10/2/2007 15

Why this approach to storage?

10/2/2007 16

Heap Order Property
Heap order property: For every non-root

node X, the value in the parent of X is less
than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap

10/2/2007 17

Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

50 700

85

65

10/2/2007 18

Heap – Insert(val)

Basic Idea:
1. Put val at “next” leaf position
2. Percolate up by repeatedly exchanging

node until no longer needed

10/2/2007 19

Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

10/2/2007 20

Insert Code (optimized)
void insert(Object o) {

assert(!isFull());
size++;
newPos =

percolateUp(size,o);
Heap[newPos] = o;

}

int percolateUp(int hole,
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:

(Code in book)

10/2/2007 21

Heap – Deletemin

Basic Idea:
1. Remove root (that is always the min!)
2. Put “last” leaf node at root
3. Find smallest child of node
4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed.

10/2/2007 22

DeleteMin: percolate down

996040

1520

10

50 700

85

65

996040

6520

15

50 700

85

10/2/2007 23

DeleteMin Code (Optimized)
Object deleteMin() {

assert(!isEmpty());
returnVal = Heap[1];
size--;
newPos =

percolateDown(1,
Heap[size+1]);

Heap[newPos] =
Heap[size + 1];

return returnVal;
}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right ≤ size &&

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:

(code in book)

10/2/2007 24

876543210

Insert: 16, 32, 4, 69, 105, 43, 2

