CSE 326: Data Structures

Asymptotic Analysis

James Fogarty Autumn 2007 Lecture 3

Linear Search vs Binary Search

	Linear Search	Binary Search
Best Case	4 at [0]	4 at [middle]
Worst Case	3n+2	4 log n + 4

So ... which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Fast Computer vs. Smart Programmer (round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the *order* of the running time of the algorithm
 - A valuable tool when the input gets "large"
 - Ignores the *effects of different machines* or *different implementations* of an algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
 - Linear search is $T(n) = 3n + 2 \in O(n)$
 - Binary search is $T(n) = 4 \log_2 n + 4 \in O(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime

Asymptotic Analysis

- Eliminate low order terms
 - $-4n + 5 \Rightarrow$
 - $-0.5 n \log n + 2n + 7 \Rightarrow$
 - $-n^3 + 2^n + 3n \Rightarrow$
- Eliminate coefficients
 - 4n ⇒
 - $-0.5 \text{ n log n} \Rightarrow$
 - $n \log n^2 = >$

Properties of Logs

- $\log AB = \log A + \log B$
- **Proof**: $A = 2^{\log_2 A}, B = 2^{\log_2 B}$

 $AB = 2^{\log_2 A} \cdot 2^{\log_2 B} = 2^{(\log_2 A + \log_2 B)}$

 $\therefore \log AB = \log A + \log B$

- Similarly:
 - $-\log(A/B) = \log A \log B$
 - $-\log(A^B) = B \log A$
- Any log is equivalent to log-base-2

Although not yet apparent, as *n* gets "sufficiently large", f(n) will be "greater than or equal to" g(n)9/30/2007

Definition of Order Notation

- Upper bound: T(n) = O(f(n)) Big-O Exist positive constants c and n' such that $T(n) \le c f(n)$ for all $n \ge n'$
- Lower bound: $T(n) = \Omega(g(n))$ Omega Exist positive constants c and n' such that $T(n) \ge c g(n)$ for all $n \ge n'$
- Tight bound: $T(n) = \theta(f(n))$ Theta When both hold:

T(n) = O(f(n)) $T(n) = \Omega(f(n))$

Definition of Order Notation O(f(n)) : <u>a set or class of functions</u>

 $g(n) \in O(f(n))$ iff there exist positive consts *c* and n_0 such that:

 $g(n) \leq c f(n)$ for all $n \geq n_0$

Example:

 $100n^2 + 1000 \le 5(n^3 + 2n^2)$ for all $n \ge 19$

So $g(n) \in O(f(n))$

11

9/30/2007

Order Notation: Example

9/30/2007

Some Notes on Notation

- Sometimes you'll see g(n) = O(f(n))
- This is equivalent to $g(n) \in O(f(n))$
- What about the reverse?
 O(f(n)) = g(n)

Big-O: Common Names

- constant:	O(1)	
– logarithmic:	O(log n)	$(\log_k n, \log n^2 \in O(\log n))$
– linear:	O(n)	
– log-linear:	O(n log n)	
– quadratic:	O(n ²)	
– cubic:	O(n ³)	
– polynomial:	O(n ^k)	(k is a constant)
– exponential:	O(C ⁿ)	(c is a constant > 1)

Meet the Family

- O(f(n)) is the set of all functions asymptotically less than or equal to f(n)
 - o(f(n)) is the set of all functions asymptotically strictly less than f(n)
- Ω(f(n)) is the set of all functions asymptotically greater than or equal to f(n)
 - $-\omega(f(n))$ is the set of all functions asymptotically strictly greater than f(n)
- θ(f(n)) is the set of all functions asymptotically equal to f(n)

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff There exist *c* and n_0 such that $g(n) \leq c f(n)$ for all $n \geq n_0$ - $g(n) \in O(f(n))$ iff There exists a n_0 such that g(n) < c f(n) for all *c* and $n \geq n_0$ Equivalent to: $\lim_{n \to \infty} g(n)/f(n) = 0$
- $g(n) \in \Omega(f(n))$ iff There exist *c* and n_0 such that $g(n) \ge c f(n)$ for all $n \ge n_0$ - $g(n) \in \omega(f(n))$ iff There exists a n_0 such that g(n) > c f(n) for all *c* and $n \ge n_0$ Equivalent to: $\lim_{n\to\infty} g(n)/f(n) = \infty$
- $g(n) \in \theta(f(n))$ iff $g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
0	\leq
Ω	\geq
θ	=
0	<
ω	>

Pros and Cons of Asymptotic Analysis

Perspective: Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
 - Worst Case
 - Your worst enemy is choosing input
 - Best Case
 - Average Case
 - Assumes some probabilistic distribution of inputs
 - Amortized
 - Average time over many operations

Types of Analysis

Two orthogonal axes:

– Bound Flavor

- Upper bound (O, o)
- Lower bound (Ω , ω)
- Asymptotically tight (θ)
- Analysis Case
 - Worst Case (Adversary)
 - Average Case
 - Best Case
 - Amortized

$16n^{3}\log_{8}(10n^{2}) + 100n^{2} = O(n^{3}\log n)$

- Eliminate low-order terms
- Eliminate constant coefficients

 $16n^{3}\log_{8}(10n^{2}) + 100n^{2}$ $\rightarrow 16n^{3}\log_{8}(10n^{2})$ $\rightarrow n^3 \log_8(10n^2)$ → $n^3(\log_8(10) + \log_8(n^2))$ $\rightarrow n^{3}\log_{8}(10) + n^{3}\log_{8}(n^{2})$ $\rightarrow n^3 \log_8(n^2)$ $\rightarrow 2n^3 \log_8(n)$ $\rightarrow n^3 \log_8(n)$ $\rightarrow n^3 \log_8(2) \log(n)$ $\rightarrow n^3 \log(n)/3$ $\rightarrow n^3 \log(n)$

- Should be started on Homework 1
- Priority Queues and Heaps up Next (relevant to Project 2)