CSE 326: Data Structures

Asymptotic Analysis

James Fogarty
Autumn 2007
Lecture 3

Linear Search vs Binary Search

	Linear Search	Binary Search
Best Case	4 at [0]	4 at [middle]
Worst Case	$3 n+2$	$4 \log n+4$

So ... which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Fast Computer vs. Smart Programmer (round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- I gnores the effects of different machines or different implementations of an algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $T(n)=3 n+2 \in \mathbf{O}(\mathbf{n})$
- Binary search is $T(n)=4 \log _{2} n+4 \in \mathbf{O}(\log n)$

Asymptotic Analysis

- Eliminate low order terms

$$
\begin{aligned}
& -4 n+5 \Rightarrow \\
& -0.5 n \log n+2 n+7 \Rightarrow \\
& -n^{3}+2^{n}+3 n \Rightarrow
\end{aligned}
$$

- Eliminate coefficients
- $4 \mathrm{n} \Rightarrow$
$-0.5 n \log n \Rightarrow$
$-n \log n^{2}=>$

Properties of Logs

- $\log A B=\log A+\log B$
- Proof: $A=2^{\log _{2} A}, B=2^{\log _{2} B}$

$$
\begin{aligned}
& A B=2^{\log _{2} A} \cdot 2^{\log _{2} B}=2^{\left(\log _{2} A+\log _{2} B\right)} \\
& \therefore \log A B=\log A+\log B
\end{aligned}
$$

- Similarly:
$-\log (A / B)=\log A-\log B$
$-\log \left(A^{B}\right)=B \log A$
- Any \log is equivalent to log-base-2

Order Notation: Intuition

$$
\begin{aligned}
& f(n)=n^{3}+2 n^{2} \\
& g(n)=100 n^{2}+1000
\end{aligned}
$$

Although not yet apparent, as n gets "sufficiently large", $f(n)$ will be "greater than or equal to" $g(n)$

Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad B i g-O$

Exist positive constants c and n^{\prime} such that

$$
T(n) \leq c f(n) \text { for all } n \geq n^{\prime}
$$

- Lower bound: $\mathrm{T}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

Omega
Exist positive constants c and n^{\prime} such that $T(n) \geq c g(n)$ for all $n \geq n^{\prime}$

- Tight bound: $T(n)=\theta(f(n)) \quad$ Theta When both hold:

$$
\begin{aligned}
& \mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n})) \\
& \mathrm{T}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))
\end{aligned}
$$

Definition of Order Notation

$\mathbf{O}(\mathbf{f}(\mathbf{n}))$: a set or class of functions

$g(n) \in O(f(n)) \quad$ iff there exist positive consts c and n_{0} such that:

$$
g(n) \leq c f(n) \text { for all } n \geq n_{0}
$$

Example:
$100 n^{2}+1000 \leq 5\left(n^{3}+2 n^{2}\right)$ for all $n \geq 19$

$$
\text { So } g(n) \in O(f(n))
$$

Order Notation: Example

Some Notes on Notation

- Sometimes you'll see

$$
g(n)=O(f(n))
$$

- This is equivalent to

$$
g(n) \in O(f(n))
$$

- What about the reverse?

$$
O(f(n))=g(n)
$$

Big-O: Common Names

- constant: $\quad \mathrm{O}(1)$
- logarithmic: O(logn)
$\left(\log _{k} n, \log n^{2} \in O(\log n)\right)$
- linear:

O(n)

- log-linear: O(n log n)
- quadratic: $\quad O\left(n^{2}\right)$
- cubic: $\quad O\left(n^{3}\right)$
- polynomial: $\quad \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \quad$ (k is a constant)
- exponential: $\quad \mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right) \quad(\mathrm{c}$ is a constant $>1)$

Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
- o($f(n)$) is the set of all functions asymptotically strictly less than $f(n)$
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
$-\omega(f(n))$ is the set of all functions asymptotically strictly greater than $f(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff

There exist c and n_{0} such that $g(n) \leq c f(n)$ for all $n \geq n_{0}$

- $g(n) \in o(f(n))$ iff

There exists a n_{0} such that $g(n)<c f(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$

- $g(n) \in \Omega(f(n))$ iff

There exist c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$

- $g(n) \in \omega(f(n))$ iff There exists a n_{0} such that $g(n)>c f(n)$ for all c and $n \geq n_{0}$ Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$
- $g(n) \in \theta(f(n))$ iff
$g(n) \in O(f(n))$ and $g(n) \in \Omega(f(n))$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
θ	$=$
0	$<$
ω	$>$

Pros and Cons of Asymptotic Analysis

Perspective: Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
- Worst Case
- Your worst enemy is choosing input
- Best Case
- Average Case
- Assumes some probabilistic distribution of inputs
- Amortized
- Average time over many operations

Types of Analysis

Two orthogonal axes:

- Bound Flavor
- Upper bound (O, o)
- Lower bound (Ω, ω)
- Asymptotically tight (θ)
- Analysis Case
- Worst Case (Adversary)
- Average Case
- Best Case
- Amortized

$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}=O\left(n^{3} \log n\right)$

- Eliminate low-order terms
- Eliminate constant coefficients
$16 n^{3} \log _{8}\left(10 n^{2}\right)+100 n^{2}$
$\rightarrow 16 n^{3} \log _{8}\left(10 n^{2}\right)$
$\rightarrow \mathrm{n}^{3} \log _{8}\left(10 \mathrm{n}^{2}\right)$
$\rightarrow \mathrm{n}^{3}\left(\log _{8}(10)+\log _{8}\left(\mathrm{n}^{2}\right)\right)$
$\rightarrow \mathrm{n}^{3} \log _{8}(10)+\mathrm{n}^{3} \log _{8}\left(\mathrm{n}^{2}\right)$
$\rightarrow \mathrm{n}^{3} \log _{8}\left(\mathrm{n}^{2}\right)$
$\rightarrow 2 \mathrm{n}^{3} \log _{8}(\mathrm{n})$
$\rightarrow \mathrm{n}^{3} \log _{8}(\mathrm{n})$
$\rightarrow \mathrm{n}^{3} \log _{8}(2) \log (\mathrm{n})$
$\rightarrow \mathrm{n}^{3} \log (\mathrm{n}) / 3$
$\rightarrow \mathrm{n}^{3} \log (\mathrm{n})$
- Should be started on Homework 1
- Priority Queues and Heaps up Next (relevant to Project 2)

