CSE 326: Data Structures

Asymptotic Analysis

James Fogarty
Autumn 2007
Lecture 2

Bring to Class on Wednesday:

e Name

e Email address
e Year (1,2,3,4)
e Major

e Hometown

e Interesting Fact or
“What | did on my
summer vacation”

9/28/2007 2

Algorithm Analysis: Why?

e Correctness:

—Does the algorithm do what is
Intended.

e Performance:

—What is the running time of the
algorithm.

—How much storage does it consume.
e Different algorithms may be correct
—Which should I use?

9/28/2007

Recursive algorithm for sum

e \Write a recursive function to find the
sum of the first n integers stored In
array V.

sum(integer array v, iInteger n) returns integer
iIT n =0 then
sum = 0
else
sum = nth number + sum of Ffirst n-1 numbers
return sum

9/28/2007

Proof by Induction

e Basis Step: The algorithm is correct for
a base case or two by inspection.

e Inductive Hypothesis (nh=k): Assume
that the algorithm works correctly for
the first k cases.

e Inductive Step (h=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

9/28/2007 5

Program Correctness by Induction

e Basis Step:
sum(v,0) = 0. v

e Inductive Hypothesis (n=Kk):
Assume sum(v,k) correctly returns sum of first
k elements of v, i.e. v[0]+v[1]+.+Vv[k-1]+V[K]

e Inductive Step (h=k+1):
sum(v,n) returns
vlk]+sum(v,k-1)= (by iInductive hyp.)
VEKI+(vIO]+v[1]+.+v[k-1])=
v[Oo]+Vv[1]+.+v[k-1]+V[K] v

9/28/2007

Algorithms vs Programs

e Proving correctness of an algorithm is very
Important

— a well designed algorithm is guaranteed to work
correctly and its performance can be estimated

e Proving correctness of a program (an
Implementation) is fraught with weird bugs

— Abstract Data Types are a way to bridge the gap
between mathematical algorithms and programs

9/28/2007

Comparing Two Algorithms

GOAL: Sort a list of names

“I'll buy a faster CPU”

“I'll use C++ Instead of Java — wicked fast!”
“Ooh look, the —0O4 flag!”

“Who cares how | do it, I'll add more memory!”

“Can’t | just get the data pre-sorted??”

9/28/2007

Comparing Two Algorithms

e What we want:
— Rough Estimate
— Ignores Details

e Really, iIndependent of detalls

— Coding tricks, CPU speed, compiler
optimizations, ...

— These would help any algorithms equally

— Don’t just care about running time — not a
good enough measure

9/28/2007

Big-O Analysis

e Ignores “detalls”

e What details?
— CPU speed
— Programming language used
— Amount of memory
— Compiler
— Order of input
— Size of input ... sorta.

9/28/2007

10

Analysis of Algorithms

e Efficiency measure
— how long the program runs time complexity
— how much memory it uses space complexity

 Why analyze at all?

— Decide what algorithm to implement before
actually doing it

— Given code, get a sense for where bottlenecks
must be, without actually measuring it

9/28/2007 11

Asymptotic Analysis

One detail we won’t ignore:
problem size, # of input elements

e Complexity as a function of input size n
T(n) =4n + 5
T(N) =0.5nlogn-2n+7
T(n) =2" + n3 + 3n

e What happens as n grows?

9/28/2007

12

Why Asymptotic Analysis?

e Most algorithms are fast for small n

— Time difference too small to be noticeable
— External things dominate (OS, disk 1/0, ...)

e BUT n Is often large In practice
— Databases, internet, graphics, ...

e Difference really shows up as n grows!

9/28/2007

13

Exercise - Searching

2 | 3|5 | 16| 37| 50| 73| 75|126

bool ArrayFind(1nt array|[], Int n,
Int key){

// Insert your algorithm here

What algorithm would you choose
9/28/2007 to implement this code snifpet?

Analyzing Code

Basic Java operations
Consecutive statements
Conditionals

Loops

Function calls
Recursive functions

9/28/2007

Constant time

Sum of times

Larger branch plus test
Sum of iterations

Cost of function body
Solve recurrence relation

15

Linear Search Analysis

bool LinearArrayFind(int arrayl[],

int n,
int key) {
forC iInt 1 =0; 1 <nj; 1++) {
1T array[1] == key)
// Found it!
return true;

}

return false;

}

9/28/2007

Best Case:
3

Worst Case:
2n+1

16

Binary Search Analysis

bool BinArrayFind(int array[], int low,

int high, Int key) {
// The subarray is empty
1T(C low > high) return false;

// Search this subarray recursively

int mid = (high + low) 7/ 2;

1T(key == array[mid]) {
return true;

} else 1T(key < array[mid]) {
return BinArrayFind(array, low,

mid-1, key);
} else {

Best case:
4

Worst case:
log n?

return BinArrayFind(array, mid+1,

9/28/2007 high, key);
}

17

Solving Recurrence Relations

1. Determine the recurrence relation. What is/are
the base case(s)?

2. “Expand” the original relation to find an equivalent
general expression in terms of the number of
expansions.

3. Find a closed-form expression by setting the
number of expansions to a value which reduces

the problem to a base case
9/28/2007 18

Linear Search vs Binary Search

Linear Search

Binary Search

Best Case

Worst Case

So ... which algorithm is better?
What tradeoffs can you make?

9/28/2007

19

Fast Computer vs. Slow Computer

linear search on Pentium-IV ——

500
450
400
350
300
250 ¢

time in ms

linear search on 486

20
elts to be searched

Fast Computer vs. Smart Programmer

time in ms

350

300

250 r

.}
o
o

(round 1)

linear search on Pentium-1V
binary search on 486

e

It

e—
e

40 60
elts to be searched

20

80

100

time in ms

Fast Computer vs. Smart Programmer

1000

800

600

400

200

elts to be searched

(round 2)
linear search on Pentium-IV A =
binary searchon486 —— / -
v /
e
//
f// ____________
,,,,,,, e
P fﬁf"_ﬂﬂrﬂ_ /r/
e 7
/ ,//f
,//
200 400 600 800 1000

Asymptotic Analysis

e Asymptotic analysis looks at the order
of the running time of the algorithm

— A valuable tool when the input gets “large”

— Ignores the effects of different machines or
different implementations of the same
algorithm

e Intuitively, to find the asymptotic
runtime, throw away the constants and

low-order terms
— Linear search is T(n) =3n + 2 € O(N)
— Binary search is T(n) = 4 log,n + 4 € O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime

9/28/2007 23

