
CSE 326: Data Structures

Asymptotic Analysis

James Fogarty
Autumn 2007

Lecture 2



9/28/2007 2

Bring to Class on Wednesday:
• Name
• Email address
• Year (1,2,3,4)
• Major
• Hometown
• Interesting Fact or 

“What I did on my 
summer vacation”



9/28/2007 3

Algorithm Analysis: Why?
• Correctness:

–Does the algorithm do what is 
intended.

• Performance:
–What is the running time of the 

algorithm.
–How much storage does it consume.

• Different algorithms may be correct
–Which should I use?



9/28/2007 4

Recursive algorithm for sum
• Write a recursive function to find the 

sum of the first n integers stored in 
array v.

sum(integer array v, integer n) returns integer

if n = 0 then
sum = 0

else

sum = nth number + sum of first n-1 numbers
return sum



9/28/2007 5

Proof by Induction
• Basis Step: The algorithm is correct for 

a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume 
that the algorithm works correctly for 
the first k cases.

• Inductive Step (n=k+1): Given the 
hypothesis above, show that the k+1 
case will be calculated correctly.



9/28/2007 6

Program Correctness by Induction
• Basis Step:

sum(v,0) = 0. 

• Inductive Hypothesis (n=k): 
Assume sum(v,k) correctly returns sum of first 
k elements of v, i.e. v[0]+v[1]+…+v[k-1]+v[k]

• Inductive Step (n=k+1): 
sum(v,n) returns
v[k]+sum(v,k-1)= (by inductive hyp.)
v[k]+(v[0]+v[1]+…+v[k-1])=
v[0]+v[1]+…+v[k-1]+v[k]



9/28/2007 7

Algorithms vs Programs
• Proving correctness of an algorithm is very 

important
– a well designed algorithm is guaranteed to work 

correctly and its performance can be estimated

• Proving correctness of a program (an 
implementation) is fraught with weird bugs
– Abstract Data Types are a way to bridge the gap 

between mathematical algorithms and programs



9/28/2007 8

Comparing Two Algorithms
GOAL: Sort a list of names

“I’ll buy a faster CPU”

“I’ll use C++ instead of Java – wicked fast!”

“Ooh look, the –O4 flag!”

“Who cares how I do it, I’ll add more memory!”

“Can’t I just get the data pre-sorted??”



9/28/2007 9

Comparing Two Algorithms
• What we want:

– Rough Estimate
– Ignores Details

• Really, independent of details 
– Coding tricks, CPU speed, compiler 

optimizations, …
– These would help any algorithms equally
– Don’t just care about running time – not a 

good enough measure



9/28/2007 10

Big-O Analysis
• Ignores “details”
• What details?

– CPU speed
– Programming language used
– Amount of memory
– Compiler
– Order of input
– Size of input … sorta.



9/28/2007 11

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity
– how much memory it uses space complexity

• Why analyze at all?
– Decide what algorithm to implement before 

actually doing it
– Given code, get a sense for where bottlenecks 

must be, without actually measuring it



9/28/2007 12

Asymptotic Analysis
One detail we won’t ignore:

problem size, # of input elements

• Complexity as a function of input size n
T(n) = 4n + 5
T(n) = 0.5 n log n - 2n + 7
T(n) = 2n + n3 + 3n

• What happens as n grows?



9/28/2007 13

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable
– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Difference really shows up as n grows!



9/28/2007 14

Exercise - Searching

bool ArrayFind( int array[], int n, 
int key){
// Insert your algorithm here

2 3 5 16 37 50 73 75 126

What algorithm would you choose 
to implement this code snippet?



9/28/2007 15

Analyzing Code

Basic Java operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time
Sum of times
Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation



9/28/2007 16

Linear Search Analysis
bool LinearArrayFind(int array[],

int n, 
int key ) {

for( int i = 0; i < n; i++ ) {
if( array[i] == key )

// Found it!
return true;

}
return false;

}

Best Case:
3

Worst Case:
2n+1



9/28/2007 17

Binary Search Analysis
bool BinArrayFind( int array[], int low,

int high, int key ) {
// The subarray is empty
if( low > high ) return false;

// Search this subarray recursively
int mid = (high + low) / 2;
if( key == array[mid] ) {

return true;
} else if( key < array[mid] ) {

return BinArrayFind( array, low, 
mid-1, key );

} else {
return BinArrayFind( array, mid+1,

high, key );
}

Best case:
4

Worst case:
log n?



9/28/2007 18

Solving Recurrence Relations

1. Determine the recurrence relation.  What is/are 
the base case(s)?

2. “Expand” the original relation to find an equivalent 
general expression in terms of the number of 
expansions.

3. Find a closed-form expression by setting the 
number of expansions to a value which reduces 
the problem to a base case



9/28/2007 19

Linear Search vs Binary Search

4 log n + 43n+2Worst Case

4 at [middle]3 at [0]Best Case

Binary SearchLinear Search

So … which algorithm is better?
What tradeoffs can you make?



9/28/2007 20

Fast Computer vs. Slow Computer



9/28/2007 21

Fast Computer vs. Smart Programmer 
(round 1)



9/28/2007 22

Fast Computer vs. Smart Programmer 
(round 2)



9/28/2007 23

Asymptotic Analysis
• Asymptotic analysis looks at the order

of the running time of the algorithm
– A valuable tool when the input gets “large”
– Ignores the effects of different machines or 

different implementations of the same 
algorithm

• Intuitively, to find the asymptotic 
runtime, throw away the constants and 
low-order terms
– Linear search is T(n) = 3n + 2 ∈ O(n)
– Binary search is T(n) = 4 log2n + 4 ∈ O(log n)

Remember: the fastest algorithm has the 
slowest growing function for its runtime


