Data Compression: Huffman Coding

10.1.2 in Weiss (p.389)

Why compress files?

Resources are limited

Long-term storage (disk space)
Internet transfers (network bandwidth)
Fast memory access (cache)

Because we can

Is compression possible?

- Most data contains redundancies
 - E.g. Human-readable text
 - Not all combinations are equally likely.
 - In English, some letter pairs ("qu", "th", etc.) appear more frequently than others.
- The essential information content is much less
 - Information theory developed by Shannon in 1950s
 - If you have *n* equally likely symbols, how many bits do you need to represent them?

What can be compressed?

2

4

- Which of the following would we require in pristine shape? (lossless)
 - C++ source file
 - Binary executable
 - Photograph of your thumb
 - Video of a monkey eating a banana
 - MP3 ringtones
 - E-mail

Data Compression

8

6

Lossy Compression

Cost of a Huffman Tree

Cost of a Huffman Tree containing n symbols is the expected length of a codeword.

 $C(T) = p_1 * r_1 + p_2 * r_2 + p_3 * r_3 + \dots + p_n * r_n$ For previous example = (.50 * 1) + (.125 * 3) + (.125 * 3) + (.25 * 2)

Where:

- \mathbf{p}_{i} = the probability that a symbol occurs
- \mathbf{r}_{i} = the length of the path from the root to the node

13

Constructing a Huffman Tree

Letter	Frequency	code
а	.50	0
b	.125	100
с	.125	101
d	.25	11

14

Huffman Tree Construction Part the First

- Given a symbol-frequency table:
 - Start with a forest of one-node trees
 - One for each symbol
 - Associate a frequency with each tree

Huffman Tree Construction Part the Second

- While there is more than one tree
 - Pick the two trees with smallest frequency
 - Combine them into one tree
 - And add their frequencies

Huffman Tree Construction Part the Third

Digression: Why "anti-compress" files?

- Error-correcting codes
 - By adding redundancies into data instead of removing it, we can make it robust to noise.
 - Noise on our communication channel will corrupt this redundancy.

18

- CD/DVD optical storage
- Hard disk magnetic storage
- WiFi
- Ethernet / CDMA
- Examples: checksums, phonetic alphabet