
Data Compression:
Huffman Coding

10.1.2 in Weiss (p.389)

 2

Why compress files?

• Resources are limited

– Long-term storage (disk space)

– Internet transfers (network bandwidth)

– Fast memory access (cache)

• Because we can

 3

Is compression possible?

• Most data contains redundancies

– E.g. Human-readable text

– Not all combinations are equally likely.

– In English, some letter pairs (“qu”, “th”, etc.) appear
more frequently than others.

• The essential information content is much less

– Information theory developed by Shannon in 1950s

– If you have n equally likely symbols, how many bits
do you need to represent them?

 4

What can be compressed?

• Which of the following would we require in
pristine shape? (lossless)

– C++ source file

– Binary executable

– Photograph of your thumb

– Video of a monkey eating a banana

– MP3 ringtones

– E-mail

 5

• Lossless compression X = X’

• Lossy compression X != X’

• Compression Ratio |X|/|Y|

– Where |X| is the # of bits in X.

Data Compression

Encoder DecoderX Y X’

original compressed decompressed

Reversible or
Entropy Coding

Irreversible Coding

 6

Lossy Compression

• Ideal for signals with more data than humans
can process (high-fidelity).

• Most audio and video information can be
removed without being noticed.

Standards:

• JPEG (Joint Photographic Experts Group)

• MPEG (Motion Picture Experts Group)

• MP3 (MPEG-1, Layer 3)
Can get compression
ratios of 10:1

 7

Lossless Compression

• No data is lost.

• Information is low-fidelity to begin with.

Standards:

• Gzip, Unix compress, zip, GIF

Can get compression
ratios of 4:1

Another technique is run-length encoding (RLE), part of several
compression techniques (BMP, PCX, TIFF, PDF)

A run of characters is replaced by the number of characters of that

typeand a single character:

RTAAAAAADEEEE

RT*6AD*4E

 8

Lossless Compression of text

ASCII = fixed 8 bits per character

Example: “hello there”

– 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?

Really only need 7 bits for 128 things

We could look JUST at the message,

there are only 6 possible characters + one space. = 7 things

– needs 3 bits.

Encode: aabddcaa = could do as 16 bits (each character = 2 bits each)

Huffman can do as 14 bits

 9

Huffman Coding

• Uses frequencies of
symbols in a string to

build a prefix code.

• Prefix Code – no code
in our encoding is a
prefix of another code.

11d

101c

100b

0a

codeLetter

1951

Note:
codes are
variable
length –
(0 to 3
bits per
character)

 10

Huffman Tree

• All symbols at leaves

• Edges labeled with 0-1

• Why does this
guarantee prefix code?

a

d

b c

01

10

10

 11

Decoding a Prefix Code

Loop

start at root of tree

loop

if bit read = 1 then take 1-child

else, take 0-child

until node is a leaf

Report character found!

Until end of the message

 12

Decode: 11100010100110

11d

101c

100b

0a

codeLetter

8 characters:

•8*8 bits = 64 bits
in ASCII

•8*2 bits = 16 bits
(if used 2 bits
each)

•14 bits = Huffman
(uses frequency

Why did we need the code to be a prefix code?

 13

Cost of a Huffman Tree

Cost of a Huffman Tree containing n symbols is
the expected length of a codeword.

C(T) = p1*r1+p2*r2+p3*r3+….+ pn*rn

Where:

pi = the probability that a symbol occurs

ri = the length of the path from the root to the

node

For previous example = (.50 * 1) + (.125 * 3) + (.125 * 3) + (.25 * 2)

 14

Constructing a Huffman Tree

.25

.125

.125

.50

Frequency

11d

101c

100b

0a

codeLetter
What is
the cost
of this
tree?

 15

Huffman Tree Construction
Part the First

• Given a symbol-frequency table:

– Start with a forest of one-node trees

– One for each symbol

– Associate a frequency with each tree

a
0.5

b
0.125

c
0.125

d
0.25

 16

Huffman Tree Construction
Part the Second

• While there is more than one tree

– Pick the two trees with smallest frequency

– Combine them into one tree

• And add their frequencies

a
0.5

b
0.125

c
0.125

d
0.25

0.25

 17

Huffman Tree Construction
Part the Third

• Pick arbitrary 0-1
labellings for the
edges

– More than one
Huffman tree is
possible

– How to get from one
Huffman tree to
another?

a

0.25 d

b c

01

10

10

 18

Digression:
Why “anti-compress” files?

• Error-correcting codes

– By adding redundancies into data instead of
removing it, we can make it robust to noise.

– Noise on our communication channel will corrupt
this redundancy.

• CD/DVD optical storage

• Hard disk magnetic storage

• WiFi

• Ethernet / CDMA

– Examples: checksums, phonetic alphabet

