Minimum Spanning Trees

Given an undirected graph $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, find a graph $\mathbf{G}^{\prime}=\left(\mathbf{V}, \mathrm{E}^{\prime}\right)$ such that:

$$
-E^{\prime} \text { is a subset of } E
$$

G^{\prime} is a minimum spanning tree.
$-\left|E^{\prime}\right|=|V|-1$
$-\mathrm{G}^{\prime}$ is connected
$-\sum_{(u, v) \in E^{\prime}} \mathrm{c}_{u v}$ is minimal

Applications: wiring a house, power grids, Internet connections

Two Different Approaches

Prim's Algorithm Almost identical to Dijkstra's

Prim's algorithm

Idea: Grow a tree by adding an edge from the "known" vertices to the "unknown" vertices. Pick the edge with the smallest weight.

Prim's Algorithm for MST

A node-based greedy algorithm Builds MST by greedily adding nodes

1. Select a node to be the "root"

- mark it as known
- Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost from some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

Prim's Algorithm Analysis

Running time:

Same as Dijkstra's: $\quad \mathrm{O}(|\mathrm{E}| \log |\mathrm{V}|)$

Prim's Algorithm Analysis

Correctness:

Proof is similar to Dijkstra's

Prep For Alternate Algorithm

- Will study alternate MST algorithm (Kruskals)

