Dijkstra's Algorithm Continued

E.W. Dijkstra (1930-2002)

Dijkstra's Algorithm: Pseudocode Initialize the cost of each node to ∞ Initialize the cost of the source to 0 While there are unknown nodes left in the graph Select an unknown node b with the lowest cost Mark b as known For each node a adjacent to b a's cost = min(a's old cost, b's cost + cost of (b, a))

Dijkstra's Alg: Implementation Initialize the cost of each node to ∞ Initialize the cost of the source to 0 While there are unknown nodes left in the graph Select the unknown node b with the lowest cost Mark b as known For each node a adjacent to b a's cost = min(a's old cost, b's cost + cost of (b, a)) What data structures should we use? Operations to be performed: deleteMin() decreaseKey()

Single-Source Shortest Path

• Given a graph **G** = (V, E) and a single distinguished vertex **s**, find the shortest weighted path from **s** to every other vertex in **G**.

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?

Analysis

• Total running time for Dijkstra's: $\begin{array}{c} O(|V|^2+|E|) & (linear \ scan) \\ O(|V| \ log \ |V|+|E| \ log \ |V|) & (heaps) \end{array}$

What if we want to find the shortest path from each point to ALL other points?

Dynamic Programming

Algorithmic technique that systematically <u>records</u> the answers to sub-problems in a table and <u>re-</u> <u>uses</u> those recorded results (rather than recomputing them).

Simple Example: Calculating the Nth Fibonacci number.

Fib(N) = Fib(N-1) + Fib(N-2)

Floyd-Warshall

for (int k = 1; k =< V; k++)
for (int i = 1; i =< V; i++)
for (int j = 1; j =< V; j++)
if ((M[i][k]+ M[k][j]) < M[i][j])
 M[i][j] = M[i][k]+ M[k][j]</pre>

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices 1..k as intermediate vertices

Floyd-Warshall

13

Performance

- Time = $O(|V|^3)$
- Space = $O(|V|^2)$