Dijkstra's Algorithm Continued

E.W. Dijkstra (1930-2002)

Dijkstra's Algorithm: Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost Mark b as known
For each node a adjacent to b
a 's cost $=\min (a$'s old cost, b 's cost $+\operatorname{cost}$ of $(b, a))$


```
void Graph::dijkstra(Vertex s){
    Vertex v,w;
    Initialize s.dist = O and set dist of all other
    vertices to infinity
    wile (there exist unknown vertices, find the
    one b with the smallest distance)
        b.known = true;
    fo
        or each a adjacent to
            if (!a.known)
            if (b.dist + Cost ba < a.dist) {
                decrease(a.dist to= b.dist + Cost_ba);
                a.path = b
            }
        }
}
```


Dijkstra's Alg: Implementation

Initialize the cost of each node to ∞
Initialize the cost of the source to 0
While there are unknown nodes left in the graph
Select the unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b
a 's cost $=\min (a$'s old cost, b 's cost $+\operatorname{cost}$ of $(b, a))$
What data structures should we use?
Operations to be performed:
deleteMin()
decreaseKey()

Dijkstra's vs BFS

At each step:

1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra's Algorithm
At each step:

1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Breadth-first Search
$\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right) \quad$ directly
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
$\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|)$ heaps

Single-Source Shortest Path

- Given a graph $\mathbf{G}=(\mathrm{V}, \mathrm{E})$ and a single distinguished vertex s , find the shortest weighted path from s to every other vertex in \mathbf{G}.

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and reuses those recorded results (rather than recomputing them).

Simple Example: Calculating the Nth Fibonacci number.

$$
\operatorname{Fib}(\mathrm{N})=\operatorname{Fib}(\mathrm{N}-1)+\operatorname{Fib}(\mathrm{N}-2)
$$

Analysis

- Total running time for Dijkstra's:
$\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right) \quad$ (linear scan)
$\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|) \quad$ (heaps)

What if we want to find the shortest path from each point to ALL other points?

Floyd-Warshall
for (int $k=1 ; k=<\mathrm{V}$; $\mathrm{k}++$)
for (int $k=1 ; k=<\mathrm{V}$; $\mathrm{k}++$)
for (int $i=1$; $i=<v$; $i++$)
for (int $i=1$; $i=<v$; $i++$)
for (int $j=1 ; j=<v ; j++$)
for (int $j=1 ; j=<v ; j++$)
if ($M[i][k]+M[k][j])$ (M[i][j])
if ($M[i][k]+M[k][j])$ (M[i][j])
$M[i][j]=M[i][k]+M[k][j]$
$M[i][j]=M[i][k]+M[k][j]$ pairs of vertices (i, j) containing only vertices $1 . . \mathrm{k}$ as intermediate vertices
loyd-Warshall for All-pairs shortest path

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

Final Matrix Contents

Floyd-Warshall
Performance

- Time $=\mathrm{O}\left(|\mathrm{V}|^{\beta}\right)$
- Space $=O\left(|V|^{2}\right)$

