If all values to be sorted are known to be between 1 and K, create an array count of size K, increment counts while traversing the input, and finally output the result.
Example $K=5$. Input $=(5,1,3,4,3,2,1,1,5,4,5)$

count array	
1	
2	
3	
4	
5	

Running time to sort n items?

BucketSort Complexity: $\mathrm{O}(n+K)$

Fixing impracticality: RadixSort

- Radix $=$ "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit,
least significant to most significant (lsd to msd)

Radix Sort Example (1 ${ }^{\text {st }}$ pass)

- Case 1: K is a constant
- BinSort is linear time
- Case 2: K is variable
- Not simply linear time
- Case 3: K is constant but large (e.g. 2^{32}) - ???

Radixsort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
- RadixSort only good for large number of elements with relatively small values
- Hard on the cache compared to MergeSort/QuickSort

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples

Graphs

Graph... ADT?

- Not quite an ADT...
operations not clear
- A formalism for representing relationships between objects
Graph G = (\mathbf{v}, E)
- Set of vertices: $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\} \quad \mathrm{V}=\{$ Han, Leia, Luke \}
- Set of edges: $\quad \mathbf{E}=\left\{\begin{array}{l}\text { (Luke, Leia) } \\ \text { (Han, Leia), }\end{array}\right.$ $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{\mathrm{m}}\right\}$ where each $\mathbf{e}_{\mathbf{i}}$ connects two vertices ($\mathbf{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}$)

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don't (edges are two-way):

\mathbf{v} is adjacent to \mathbf{u} if $(\mathbf{u}, \mathbf{v}) \in \mathbf{E}$

Trees as Graphs

- Every tree is a graph!
- Not all graphs are trees!

A graph is a tree if

- There are no cycles
(directed or undirected)

- There is a path from the root to every node

Directed Acyclic Graphs (DAGs)

DAGs are directed graphs with no (directed) cycles.

Aside: If program callgraph is a DAG, then all procedure calls can be inlined

Graph Representations

0. List of vertices + list of edges

1. 2-D matrix of vertices (marking edges in the cells) "adjacency matrix"
2. List of vertices each with a list of adjacent vertices "adjacency list"

Things we might want to do:
Vertices and edges may be labeled

- iterate over vertices
- iterate over edges
- iterate over vertices adj. to a vertex
- check whether an edge exists ${ }^{15}$

Representation 1: Adjacency Matrix

A $|\mathrm{v}| \mathbf{x}|\mathrm{v}|$ array in which an element (u, v) is true if and only if there is an edge from \mathbf{u} to \mathbf{v}

Representation

- adjacency matrix:

Representation

- adjacency list:

Representation 2: Adjacency List

A $|\mathrm{v}|$-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Some Applications: Moving Around Washington

What's the shortest way to get from Seattle to Pullman? Edge labels:

Some Applications: Reliability of Communication

If Wenatchee's phone exchange goes down, can Seattle still talk to Pullman?

Some Applications:
Bus Routes in Downtown Seattle

If we're at $3^{\text {rd }}$ and Pine, how can we get to $1^{\text {st }}$ and University using Metro?

Application: Topological Sort

Given a directed graph, $\mathbf{G}=(\mathbf{V}, \mathbf{E})$, output all the vertices in V such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Topological Sort: Take One

1. Label each vertex with its in-degree (\# of inbound edges)
2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

void Graph: :topsort() \{
Vertex v, w;
labelEachVertexWithItsIn-degree();
for (int counter=0; counter < NUM_VERTICES;
$\mathrm{v}=$ findNewVertexOfDegreeZero();
v.topologicalNum = counter;
for each w adjacent to v w.indegree--;
\}
\}

