
1

1

BucketSort (aka BinSort)
If all values to be sorted are known to be between 1
andK, create an array count of size K, increment
counts while traversing the input, and finally output
the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

5

4

3

2

1

count array

Running time to sort n items?
2

BucketSort Complexity: O(n+K)

• Case 1: K is a constant
– BinSort is linear time

• Case 2: K is variable
– Not simply linear time

• Case 3: K is constant but large (e.g. 232)
– ???

3

Fixing impracticality: RadixSort

• Radix = “The base of a number system”
– We’ll use 10 for convenience, but could be

anything

• Idea: BucketSort on each digit,
least significant to most significant
(lsd to msd)

4

67
123
38
3

721
9

537
478

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10
digits for simplicity of demonstration.
Larger bucket counts should be used
in an actual implementation.

Radix Sort Example (1st pass)

721
3

123
537

67
478

38
9

After 1st pass

5

Bucket sort
by 10’s
digit

0

03
09

1 2

721
123

3

537
38

4 5 6

67

7

478

8 9

Radix Sort Example (2nd pass)

721
3

123
537

67
478

38
9

After 1st pass After 2nd pass
3
9

721
123
537

38
67

478

6

Bucket sort
by 100’s
digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example (3rd pass)

After 2nd pass
3
9

721
123
537

38
67

478

After 3rd pass
3
9

38
67

123
478
537
721

Invariant: after k passes the low order k digits are sorted.

2

7

Radixsort: Complexity

• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
– RadixSort only good for large number of elements with

relatively small values
– Hard on the cache compared to MergeSort/QuickSort 8

Internal versus External Sorting

• Need sorting algorithms that minimize disk/tape
access time

• External sorting – Basic Idea:
– Load chunk of data into RAM, sort, store this “run” on

disk/tape

– Use the Merge routine from Mergesort to merge runs

– Repeat until you have only one run (one sorted chunk)

– Text gives some examples

Graphs

Chapter 9 in Weiss

10

Graph… ADT?
• Not quite an ADT…

operations not clear

• A formalism for representing
relationships between objects
Graph G = (V,E)

– Set of vertices:
V = {v 1,v 2,…,v n}

– Set of edges:
E = {e 1,e 2,…,e m}
where each ei connects two
vertices (v i1 ,v i2)

Han

Leia

Luke

V = { Han, Leia , Luke }
E = {(Luke , Leia),

(Han, Leia),
(Leia , Han)}

11

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):

v is adjacent to u if (u,v) ∈∈∈∈ E

Han

Leia

Luke

Han

Leia

Luke

12

More Definitions:
Simple Paths and Cycles

A simple path repeats no vertices (except that the first can
be the last):
p = {Seattle, Salt Lake City, San Francisco, Dallas}
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}

A cycle is a path that starts and ends at the same node:
p = {Seattle, Salt Lake City, Dallas, San Francisco, Seattle}
p = {Seattle, Salt Lake City, Seattle, San Francisco, Seattle}

A simple cycle is a cycle that repeats no vertices except
that the first vertex is also the last (in undirected
graphs, no edge can be repeated)

3

13

Trees as Graphs

• Every tree is a graph!

• Not all graphs are trees!

A graph is a tree if
– There are no cycles

(directed or undirected)

– There is a path from the
root to every node

A

B

D E

C

F

HG

14

Directed Acyclic Graphs (DAGs)

DAGs are directed
graphs with no
(directed) cycles.

main()

add()

access()

mult()

read()

Aside: If program call-
graph is a DAG, then all
procedure calls can be in-
lined

15

Graph Representations

0. List of vertices + list of edges
1. 2-D matrix of vertices (marking edges in the cells)

“adjacency matrix”

2. List of vertices each with a list of adjacent vertices
“adjacency list”

Things we might want to do:
• iterate over vertices
• iterate over edges
• iterate over vertices adj. to a vertex
• check whether an edge exists

Han

Leia

Luke

Vertices and edges
may be labeled

16

Representation 1: Adjacency Matrix

A |V| x |V| array in which an element
(u,v) is true if and only if there is an edge
from u to v

Han

Leia

Luke

Han Luke Leia

Han

Luke

Leia

runtime:space requirements:

17

Representation
• adjacency matrix:

1 2 3 4

�
�
�

∉
∈

=
E v)(u, if ,0

E v)(u, if ,weight
 A[u][v]

4

3

2

1
1

3 4

2

18

Representation
• adjacency list:

4

3

2

1
2 3 4

3

1 2

1

3 4

2

4

19

Representation 2: Adjacency List

A |V| -ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Han

Leia

Luke
Han

Luke

Leia

runtime:space requirements: 20

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

21

Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

22

Some Applications:
Reliability of Communication

If Wenatchee’s phone exchange goes down,
can Seattle still talk to Pullman?

23

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

24

Application: Topological Sort
Given a directed graph, G = (V,E) , output all the

vertices in V such that no vertex is output before
any other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

5

25

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

26

void Graph::topsort(){

Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

v = findNewVertexOfDegreeZero();

v.topologicalNum = counter;

for each w adjacent to v

w.indegree--;

}

}

