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Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its 
members
– {3,5,7} , {4,2,8}, { 9}, { 1,6}
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Union

• Union(x,y) – take the union of two sets 
named x and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9}, 
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Find

• Find(x) – return the name of the set 
containing x.
– {3,5,7,1,6}, {4,2,8}, { 9}, 

– Find(1) = 5

– Find(4) = 8
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Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }  each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.
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Basic Algorithm
• S = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in S {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u  ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this 
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze
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Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32

33,34,35,36}

Pick (8,14)
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Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Union(7,20)
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Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Pick (19,20)
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Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
Maze
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Implementing the DS ADT
• n elements, 

Total Cost of:m finds, ≤ n-1 unions

• Target complexity: O(m+n)
i.e. O(1) amortized

• O(1) worst-case for find as well as union 
would be great, but…

Known result: both find and union cannot
be done in worst-case O(1) time

can there be
more unions?
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Up-Tree for Disjoint Union/Find

1 2 3 4 5 6 7Initial state:

1

2

3

45

6

7After several
Unions:

Roots are the names of each set.
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Find Operation

Find(x) - follow x to the root and return the root

1

2

3

45

6

7

Find(6) = 7
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Union Operation

Union(x,y) - assuming x and y are roots, point y to x.

1

2

3

45

6

7

Union(1,7)
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Simple Implementation

• Array of indices

1

2

3

45

6

7

-1 1 -1 7 7 5 -1

1   2    3    4   5    6   7

up

Up[x] == -1 means
x is a root.
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Sample Implementations

int Find(int x) {

while(up[x] != -1) {

x = up[x];

}

return x;

}

void Union(int x, int y) {

up[y] = x;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
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Find Solutions
int Find(x : int) {

if up[x] = -1 
then return x

else 
return Find(up[x]);

}

int Find(x : int) {
while up[x] ≠ -1 {

x := up[x];
}
return x;

} 

Recursive

Iterative
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A Bad Case

1 2 3 n…

1

2 3 n

Union(2,1)

1

2

3 n

Union(3,2)

Union(n,n-1)

…

…

1

2

3

n

:
:

Find(1)   n steps!!
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Now this doesn’t look good L
Can we do better?     Yes!

1. Improve unionso that find only takes 
O(log n)

• Union-by-size
• Reduces complexity to O(m log n + n)

2. Improve find so that it becomes even 
better!

• Path compression
• Reduces complexity to almostO(m + n)
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Weighted Union
• Weighted Union

– Always point the smaller (total # of nodes) tree 
to the root of the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

20

Example Again

1 2 3 n

1

2 3 n

W-Union(2,1)

1

2

3

n

W-Union(3,2)

W-Union(n,2)

…

… :
:

1

2

3 n

…

Find(1)   constant time
…
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Analysis of Weighted Union

With weighted union an up-tree of height h has 
weight at least 2h.

• Proof by induction
– Basis: h = 0. The up-tree has one node, 20 = 1

– Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h
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Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by 
weighted union.  Let h be its height.

n > 2h

log2 n > h

• Find(x) in tree T takes O(log n) time.
– Can we do better?

23

Worst Case for Weighted Union
n/2 Weighted Unions

n/4 Weighted Unions
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Example of Worst Cast (cont’)
After n/2 + n/4 + …+ 1 Weighted Unions:

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n
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Array Implementation

1

2

3

45

6

7
2 41

-1
2

1 -1
1

7 7 5 -1
4

1   2   3  4  5   6   7  
up

weight
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Weighted Union
W-Union(i,j : index){

//i and j are roots
wi := weight[i];
wj := weight[j];
if wi < wj then

up[i] := j;
weight[j] := wi + wj;

else
up[j] :=i;
weight[i] := wi +wj;

}

new runtime for Union():

new runtime for Find():
runtime for m finds and n-1 unions = 
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Union-by-size: Find Analysis
• Complexity of Find: O(max node depth)

• All nodes start at depth 0
• Node depth increases: 

– Only when it is part of smaller tree in a union
– Only by one level at a time
Result: tree size doubles when node depth increases by 1

Find runtime = O(node depth) = 

runtime for m finds and n-1 unions = 
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Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,
simply store –size

[Read section 8.4, page 299]
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How about Union-by-height?

• Can still guarantee O(log n) worst case 
depth

Left as an exercise!

• Problem: Union-by-height doesn’t combine very 
well with the new find optimization technique 
we’ll see next
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Path Compression
• On a Find operation point all the nodes on the 

search path directly to the root.

1

2

3

45

6

7

PC-Find(3)

8 9

10
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Path Compression

• On a Find operation point all the nodes on the 
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910
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Draw the result of Find(e):

f ha

b

c

d

e

g

i
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Self-Adjustment Works

PC-Find(x)

x
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Path Compression Find

PC-Find(i : index) {
r := i;
while up[r] ≠ -1 do //find root//

r := up[r];
if i ≠ r then  //compress path//

k := up[i];
while k ≠ r do

up[i] := r;
i := k;
k := up[k]

return(r)
}
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Path Compression: Code

int Find(Object x) {

// x had better be in 

// the set!

int xID = hTable[x];

int i = xID;

// Get the root for 

// this set

while(up[xID] != -1) 
{

xID = up[xID];

}

// Change the parent for

// all nodes along the path  

while(up[i] != -1) {

temp = up[i];

up[i] = xID;

i = temp;

}

return xID;

}

(New?) runtime for Find:
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Interlude: A Really Slow Function
Ackermann’s function is a reallybig function A(x, y) 

with inverse α(x, y) which is reallysmall

How fast does α(x, y) grow?   
α(x, y) = 4 for x far larger than the number of atoms 
in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences



7

37

A More Comprehensible Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3           (log log log 16 = 1)

log* 65536 = log* 2222 = 4    (log log log log 65536 = 1)

log* 265536= …………… = 5

Take this: α(m,n) grows even slower than log* n   !!
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Complex Complexity of 
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and 
find operations on a set of n elements have worst case 
complexity of O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:

O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis 
etc. that we skipped!
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Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is O(1) 
and for a PC-Find is O(log n). 

• Time complexity for m ≥ n operations on n 
elements is O(m log* n)  where log* n is a very 
slow growing function. 
– Log * n < 7 for all reasonable n. Essentially constant 

time per operation!

• Using “ranked union” gives an even better bound 
theoretically.
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Amortized Complexity

• For disjoint union / find with weighted 
union and path compression. 
– average time per operation is essentially a 

constant.

– worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but 
over time the average cost per operation is 
not.  


