Disjoint Union - Find

» Maintain a set of pairwise disjoint sets.
—{3,5,7}, {4,2,8}, {9}, {1,6}

» Each set has a unique name, one of its
members
-{357},{4.28}, {9, {16}

Union

» Union(x,y) — take the union of two sets
named x and y
-{3.57},{4.28}, {9 {16}
— Union(5,1)
{3,5,7,1,6}, {4,28}, { 9},

Find

» Find(x) — return the name of the set
containing Xx.
—-{3.57,1,6}, {4,28}, { 9},

Number the Cells

We have disjoint sets S ={ {1}, {2}, {3}, {4}.... {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), ... } 60 edges total.

Stat 1 | 2 | 3|4 |56

7 8 9 |10 |11 |12

13 |14 |15 | 16 | 17 | 18

19 | 20 | 21 | 22 | 23 | 24

25 126 |27 |28 |29 |30

3132|3334 (35|36 End

— Find(1) =5
— Find(4) =8
Basic Algorithm

* S=set of sets of connected cells
« E=setof edges
* Maze= set of maze edges (initially empty)

While there is more than one setin S {
pick a random edge (x,y) and remove from E
u = Find(x);
v = Find(y);
ifu #vthen // removing edge (x,y) connects previously non-
/I connected cells x and y - leave this edge removed!
Union(u,v)
else /I cells x and y were already connected, add this
/I edge to set of edges that will make up final maze.
add (x,y) to Maze

5
All remaining members of E together with Mazeform the maze

Example Step

Pick (8,14) S
{1,2,7,8,9,13,19}
{3}

Start 1 2 ‘ 34|56 @

{5}

7 8 9 |10|11|12 6}
{10}

13|14 |15 16 |17 | 18 1147}

19 (20|21 |22 23|24 {12}
{14,20,26,27}

25|26 27 |28|29 30 {15,16,21}

31|32 33 34 35 36 End

{22,23,24,29,30,32
33,34,35,36} 6




Example
S s
{1,2,7,8,9,13,19} {1,2,7,8,9,13,19,14,20 26,27}
@ Find(8) = 7 &
“ Find(14)=20 (4
{5} - . 5
%) Union(7,20) %}
{1117 11,17}
12} {12}
{14,20,26,27} {15,16,21}
{15,16,21} )
: (22,23,24,20,39,32
{22,23,24,29,39,32 33,34,35,36}
33,34,35,36} _

Pick (19,20) S
{1,2,7,8,9,13,19
14,20,26,27}
Start 1 2 ‘ 314|516 {3}
- {4}
7 8 9 [10]11]12 5!
{6}
13|14 |15 16 |17 | 18 (10}
19 (20|21 |22 23|24 {11,173
{12}
25 |26 27|28|29 30 {15,16,21}
3132 33 34 35 36 End

{22,23,24,29,39,32
33,34,35,36} 8

Example at the End

s
{1,2,3,4,5,6,7,... 36}

Start 1 2|3 4 5 6

7 8 9 10 11|12 Maze

13|14 |15 16 17 |18

19 120 | 21 22 23|24

25 26 27 28|29 30
3132 33 34 35 36 End

Implementing the DS ADT
 nelements can therebe |
Total Cost of mfinds, < n-1 unions mo"eunions?,

e Target complexityO(m+n)
i.e. O(1) amortized

* O(1) worst-case for find as well as union
would be great, but...
Known result: both find and uniorannot
be done in worst-case O(1) time 10

Up-Tree for Disjoint Union/Find
Initial state: @ @ @ @ @ @ @

After several (@) ® @

Unions: \ /
Roots are the names of each set. (6{

11

Find Operation

Find(x) - follow x to the root and return the root

@ ® @
® ¢ ®
Find(6) = 7 \ @/

12




Union Operation

Union(x,y)- assuming x and y are roots, point y tq

e

R

13

Simple Implementation

 Array of indices
Up[X] == -1 means

123 45 67 X is a root.

up
@ ® @

® é @
é

14

Sample Implementations

int Find(int x) { void Union(int x, int y) {
uplyl = x;
while(up[x] !=-1) { }
X = up[x];

}

return x; runtime for Union():

}

runtime for Find():

runtime for m Finds and n-1 Unions:
15

Find Solutions

Recursive int Find(x : int) {
if up[x] = -1
then return x
el se
return Find(up[x]);
}
Iterative

int Find(x : int) {
while up[x] # -1 {
X o= up[x];
}
return x;

}

16

A Bad Case

Union(2,1)

Union(3,2)

®
®
@ .
@{ @ Unit‘)n(n,n—l)

@ Find(1) n steps!!

® .

Now this doesn’t look goot
Can we do better? Yes!

1. Improveunionso thatfind only takes
O(logn)
¢ Union-by-size
* Reduces complexity to @(log n + n)

2. Improvefind so that it becomes even
better!
* Path compression
¢ Reduces complexity to almoS{m + n) 18




Weighted Union

* Weighted Union
— Always point thesmaller (total # of nodes) tree
to the root of the larger tree

& .® .u
%t A
‘

W-Union(1,7)

19

Example Again

© @ ® @

W-Union(2,1)
@ @ e @

6 W-Union(3,2)

@ .
W-Union(n,2)

@ Find(1) constant time

20

Analysis of Weighted Union

With weighted union an up-tree of height h has
weightat least 2",

¢ Proof by induction
— Basis h = 0. The up-tree has one nodes2

— Inductive step: Assume true for all h’ < h.

T W(Ty) 2 W(T,) > 2"
Minimum weight hT Welgrf‘ed Induction
up-tree of height h -1 union hypothesis
formed by W(T) > 214+ 2hi = o1

weighted unions
21

Analysis of Weighted Union (cont)

Let T be an up-tree of weight n formed by
weighted union. Let h be its height.
n>2h
log, n>h

* Find(x) in tree T takes O(log n) time.
— Can we do better?

22

Worst Case for Weighted Union

n/2 Weighted Unions

$666ddd 0

n/4 Weighted Unions

fi o%g 09% 09%

23

Example of Worst Cast (cont’)

After n/2 + n/4 + ...+ 1 Weighted Unions:

IA AT

" Find
If there are n = 2¥ nodes then the longest
path from leaf to root has length k.

24




Array Implementation
2 @ 1 @ 4
@ @{@{ ®
7
1

4

=N
W
~N (S

56
715

1
up |-1
weight [ 2

=

25

Weighted Union

W Union(i,j : index){
//i and j are roots
w = weight[i];

w = weight[j];

if wi <w then

up[i] :=j;
weight[j] = w + w;
el se

upl[jl :=i;

weight[i] (= w +w;

new runtime for Union():

new runtime for Find():

runtime for m finds and n-1 unions =

26

Union-by-size Find Analysis
» Complexity of Find: O(max node depth)
¢ All nodes start at depth 0
* Node depth increases:
— Only when it is part of smaller tree in a union

— Only by one level at a time
Result: tree size doubles when node depth increases by 1

Find runtime = O(node depth) =

runtime for mfinds and n-1 unions =
27

Nifty Storage Trick

» Use the same array representation as beforg
* Instead of storing1 for the root,

simply store-size

[Read section 8.4, page 299]

28

How about Union-by-height

 Can still guarantee O(lag) worst case
depth

Left as an exercise!

« Problem: Union-by-height doesn’t combine very
well with the new find optimization technique
we’'ll see next

29

Path Compression

» On a Find operation point all the nodes on the
search path directly to the root.

@ @
é @g @ pe-Findc)
$ 6o

S

d o

30




Path Compression

* On a Find operation point all the nodes on the
search path directly to the root.

é@ ng PC-Find(3) @ ®® (SB (4)

/(6)@ @
o

31

Draw the result of Find(e):

Q

ONONO N
&) ©

32

Self-Adjustment Works

v

| W V| V| N
_PC-Find(x) _ 1\ \

Ay
((((((((

x

33

Path Compression: Code

/I Change the parent for

int Find(Object x) { // all nodes along the path

/I x had better be in while(up[i] != -1) .(
Il the set! lerﬁp = up[il;
int XID = hTable[x]; _Up['] =xID;
inti=xID; i=temp;

}
/I Get the root for return xID;
/I this set }

while(up[xID] != -1)
{

xID = up[xID];
}

(New?) runtime for Find:

35

Path Compression Find

PC-Find(i : index) {

roo=;

while up[r] # -1 do //find root//
r i=up[r];

if i #r then //conpress path//
k :=up[i];
while k # r do
up[i] :=r;
=k
k = up[k]

return(r)

34

Interlude: A Really Slow Function

Ackermann’s function is a reallybig function A, y)
with inversea(x, y) which is reallysmall

How fast doesi(x, y) grow?

a(x,y) = 4 forx far larger than the number of atoms
in the universe @9

o shows up in:

— Computation Geometry (surface complexity)
— Combinatorics of sequences

36




A More Comprehensible Slow Functio

—

log* x = number of times you need to compute
log to bring value down to at most 1

E.g.log*2=1
log* 4 = log* 2=2
log* 16 = log* 2*=3 (log log log 16 = 1)
log* 65536 = log* 22 =4 (log log log log 65536 = 1)
log* 265536= =

Take this:a(m,n) grows even slower than logr !!

37

Disjoint Union / Find
with Weighted Union and PC

* Worst case time complexity for a W-Union is O(1)
and for a PC-Find is O(log n).
¢ Time complexity for e n operations on n
elements is O(m log* n) where log* n is a very
slow growing function.
— Log * n < 7 for all reasonable n. Essentially dans
time per operation!

¢ Using “ranked union” gives an even better bound
theoretically.

39

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizatiopsinion and
find operations on a set ofelements have worst case
complexity ofO(p Co(p, n))

Forall practical purposesthis is amortized constant time:
O(p [4) for p operations!

» Very complex analysis — worse than splay tree aigly
etc. that we skipped!

38

Amortized Complexity

« For disjoint union / find with weighted
union and path compression.

— average time per operation is essentially a
constant.

— worst case time for a PC-Find is O(log n).
« An individual operation can be costly, but

over time the average cost per operation is
not.

40




