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Hash Tables (continued) & 
Disjoint Sets

Chapter 5 & 8 in Weiss
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Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize 
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize 

Less likely 
to encounter 
Primary 
Clustering
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Quadratic Probing
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Quadratic Probing Example
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insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…
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Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will 
find an empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

���� i2 mod size = j2 mod size

���� (i2 - j2) mod size = 0

���� [(i + j)(i - j)] mod size = 0
BUT size does not divide(i-j) or (i+j)
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Quadratic Probing: Properties
• For any λ < ½, quadratic probing will find an 

empty slot; for bigger λ, quadratic probing may
find a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are 
not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!
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Double Hashing

f(i) = i * g(k)
where g is a second hash function 

• Probe sequence:
0th probe =  h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize 

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

ith probe = (h(k) + i*g(k)) mod TableSize 
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Double Hashing Example
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55

40

76
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h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes  1                   1                 1                 2                 1                 2
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Resolving Collisions with Double Hashing
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Insert these values into the hash table 
in this order.  Resolve any collisions 
with double hashing:
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Hash Functions:
H(K) = K mod M
H2(K) = 1 + ((K/M) mod (M-1))
M =
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Idea: When the table gets too full, create a 
bigger table (usually 2x as large) and hash 
all the items from the original table into the 
new table.

• When to rehash?
– half full (λ = 0.5)

– when an insertion fails

– some other threshold

• Cost of rehashing?

Rehashing
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Hashing Summary

• Hashing is one of the most important data 
structures.

• Hashing has many applications where 
operations are limited to find, insert, and 
delete.

• Dynamic hash tables have good amortized 
complexity. (cost of doubling table and 
rehashing is amortized over many inserts)
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Disjoint Sets

Chapter 8
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Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
– {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its 
members
– {3,5,7} , {4,2,8}, { 9}, { 1,6}
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Union

• Union(x,y) – take the union of two sets 
named x and y
– {3,5,7} , {4,2,8}, { 9}, { 1,6}

– Union(5,1)

{3,5,7,1,6}, {4,2,8}, { 9}, 
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Find

• Find(x) – return the name of the set 
containing x.
– {3,5,7,1,6}, {4,2,8}, { 9}, 

– Find(1) = 5

– Find(4) = 8
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Building Mazes

• Build a  random maze by erasing edges.
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Building Mazes (2)

• Pick Start and End

Start

End
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Building Mazes (3)

• Repeatedly pick random edges to delete.

Start

End
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Desired Properties

• None of the boundary is deleted

• Every cell is reachable from every other 
cell.

• Only one path from any one cell to another 
(There are no cycles – no cell can reach 
itself by a path unless it retraces some part 
of the path.)
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A Cycle

Start

End
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A Good Solution

Start

End
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A Hidden Tree

Start

End
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Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} }  each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.
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Basic Algorithm
• S = set of sets of connected cells
• E = set of edges
• Maze= set of maze edges (initially empty)

While there is more than one set in S {
pick a random edge (x,y) and remove from E
u := Find(x);
v := Find(y);
if u  ≠ v then // removing edge (x,y) connects previously non-

// connected cells x and y - leave this edge removed!
Union(u,v)

else // cells x and y were already connected, add this 
// edge to set of edges that will make up final maze.

add (x,y) to Maze
}
All remaining members of E together with Mazeform the maze
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Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32

33,34,35,36}

Pick (8,14)
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Example
S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Union(7,20)
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Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19

14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32

33,34,35,36}

Pick (19,20)
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Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
Maze


