Hash Tables (continued) \& Disjoint Sets

Chapter $5 \& 8$ in Weiss

Quadratic Probing

$$
\mathrm{f}(\mathrm{i})=\mathrm{i}^{2}
$$

- Probe sequence:
$0^{\text {th }}$ probe $=\mathrm{h}(\mathrm{k}) \bmod$ TableSize
$1^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+1)$ mod TableSize
$2^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+4)$ mod TableSize $3^{\text {th }}$ probe $=(\mathrm{h}(\mathrm{k})+9)$ mod TableSize
$\mathrm{i}^{\text {th }}$ probe $=\left(\mathrm{h}(\mathrm{k})+\mathrm{i}^{2}\right)$ mod TableSize

Quadratic Probing:

Success guarantee for $\lambda<1 / 2$

- If size is prime and $\lambda<1 / 2$, then quadratic probing will find an empty slot in size/2 probes or fewer.
- show for all $0 \leq i, j \leq \operatorname{size} / 2$ and $i \neq j$
$\left(\mathrm{h}(\mathrm{x})+\mathrm{i}^{2}\right) \bmod$ size $\neq\left(\mathrm{h}(\mathrm{x})+\mathrm{j}^{2}\right)$ mod size
- by contradiction: suppose that for some $\mathrm{i} \neq \mathrm{j}$:
$\left(h(x)+i^{2}\right) \bmod$ size $=\left(h(x)+j^{2}\right) \bmod$ size
$\Rightarrow \quad \mathrm{i}^{2} \bmod$ size $=\mathrm{j}^{2} \bmod$ size
$\Rightarrow\left(\mathrm{i}^{2}-\mathrm{j}^{2}\right) \bmod$ size $=0$
$\Rightarrow[(i+j)(i-j)] \bmod$ size $=0$
BUT size does not divide ($\mathbf{i}-\mathrm{j}$) or ($\mathbf{i}+\mathrm{j}$)

Quadratic Probing: Properties

- For any $\lambda<1 / 2$, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot
- Quadratic probing does not suffer from primary clustering: keys hashing to the same area are not bad
- But what about keys that hash to the same spot?
- Secondary Clustering!

Double Hashing

$$
\mathrm{f}(\mathrm{i})=\mathrm{i} * \mathrm{~g}(\mathrm{k})
$$

where g is a second hash function

- Probe sequence:

$$
\begin{aligned}
& 0^{\text {th }} \text { probe }=\mathrm{h}(\mathrm{k}) \bmod \text { TableSize } \\
& 1^{\text {th }} \text { probe }=(\mathrm{h}(\mathrm{k})+\mathrm{g}(\mathrm{k})) \bmod \text { TableSize } \\
& 2^{\text {th }} \text { probe }=\left(\mathrm{h}(\mathrm{k})+2^{*} \mathrm{~g}(\mathrm{k})\right) \bmod \text { TableSize } \\
& 3^{\text {th }} \text { probe }=\left(\mathrm{h}(\mathrm{k})+3^{*} \mathrm{~g}(\mathrm{k})\right) \bmod \text { TableSize } \\
& \ldots \\
& \mathrm{i}^{\text {th }} \text { probe }=\left(\mathrm{h}(\mathrm{k})+\mathrm{i}^{*} \mathrm{~g}(\mathrm{k})\right) \bmod \text { TableSize }
\end{aligned}
$$

Double Hashing Example
$h(k)=k \bmod 7$ and $g(k)=5-(k \bmod 5)$

Resolving Collisions with Double Hashing

Hash Functions:
$\mathrm{H}(\mathrm{K})=\mathrm{K} \bmod \mathrm{M}$ $\mathrm{H}_{2}(\mathrm{~K})=1+((\mathrm{K} / \mathrm{M}) \bmod (\mathrm{M}-1))$ $\mathrm{M}=$

Insert these values into the hash table in this order. Resolve any collisions with double hashing:
13
28
33
4

Rehashing

Idea: When the table gets too full, create a bigger table (usually 2 x as large) and hash all the items from the original table into the new table.

- When to rehash?
- half full ($\lambda=0.5$)
- when an insertion fails
- some other threshold
- Cost of rehashing?

Hashing Summary

- Hashing is one of the most important data structures.
- Hashing has many applications where operations are limited to find, insert, and delete.
- Dynamic hash tables have good amortized complexity. (cost of doubling table and rehashing is amortized over many inserts)

Disjoint Sets

Chapter 8

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
- \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
- Each set has a unique name, one of its members
$-\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$

Union

- Union (x, y) - take the union of two sets named x and y
$-\{3,5,7\},\{4,2,8\},\{\underline{9}\},\{1,6\}$
- Union(5,1)
$\{3,5,7,1,6\},\{4,2,8\},\{9\}$,

Find

- Find(x) - return the name of the set containing x .
- \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
$-\operatorname{Find}(1)=5$
$-\operatorname{Find}(4)=8$

Building Mazes

- Build a random maze by erasing edges.

Building Mazes (2)

- Pick Start and End

Building Mazes (3)

- Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- Only one path from any one cell to another (There are no cycles - no cell can reach itself by a path unless it retraces some part of the path.)

Start

A Good Solution

A Hidden Tree

Start

Number the Cells

We have disjoint sets $S=\{\{1\},\{2\},\{3\},\{4\}, \ldots\{36\}\}$ each cell is unto itself. We have all possible edges $E=\{(1,2),(1,7),(2,8),(2,3), \ldots\} 60$ edges total.

Start
1
:---:
13
19
25
31

Basic Algorithm

- $\mathrm{S}=$ set of sets of connected cells
- $E=$ set of edges
- Maze $=$ set of maze edges (initially empty)

While there is more than one set in S \{
pick a random edge (x, y) and remove from E
$\mathrm{u}:=$ Find (x);
$\mathrm{v}:=$ Find (y);
if $u \neq v$ then // removing edge (x, y) connects previously non-
Union(u v)
Union(u, v)
else \quad // cells x and y were already connected, add this // edge to set of edges that will make up final maze. -
\}
All remaining members of E together with Maze form the maze

S
$\{1,2,7,8,9,13,19\}$
$\{3\}$
$\{\underline{4}\}$
$\{5\}$
$\{\underline{6}\}$
$\{\underline{10}\}$
$\{11,17\}$
$\{12\}$
$\{14, \underline{20}, 26,27\}$
$\{15, \underline{16}, 21\}$
$\{22,23,24,29,39,32$ $33, \underline{34}, 35,36\}$

Example

Find(8) $=7$
Find $(14)=20$

Union(7,20)

$$
\begin{aligned}
& \{11,17\} \\
& \{12\}
\end{aligned}
$$

$$
\{15,16,21\}
$$

\{22,23,24,29,39,32 $33,34,35,36\}$

$$
\begin{aligned}
& \{10\} \\
& \{11,17\}
\end{aligned}
$$

Example

s
1,2,7,8,9,13,19 $14,20,26,27\}$

$$
\begin{aligned}
& \{12\} \\
& \{15,16,21\}
\end{aligned}
$$

$\{22,23,24,29,39,32$
$33,34,35,36\}$
Start

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Example at the End

S
$\{1,2,3,4,5,6, \underline{7}, \ldots 36\}$
\qquad E
Maze

