
1

1

Hash Tables

Chapter 5 in Weiss

2

Hash Tables

• Constant time accesses!

• A hash table is an array of some
fixed size, usually a prime number.

• General idea:

key space (e.g., integers, strings)

…

0

TableSize –1

hash function:
h(K)

hash table

3

Example

• key space = integers

• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94

2

3

9

8

7

6

5

4

1

0

4

Another Example

• key space = integers

• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34

2

3

5

4

1

0

5

Hash Functions

1. simple/fast to compute,

2. Avoid collisions

3. have keys distributed evenly among cells.

Perfect Hash function:

6

Sample Hash Functions:

• key space = strings

• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize

�
�

�
�
�

�
�

−

=

1

0

k

i
is

�
�

�
�
�

� ⋅�
−

=

1

0

37
k

i

i
is

2

7

Designing a Hash Function for web URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =

8

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing,
quadratic probing, double hashing)

9

Separate Chaining

• Separate chaining:
All keys that map to
the same hash value
are kept in a list (or
“bucket”).

2

3

9

8

7

6

5

4

1

0
Insert:
10
22
107
12
42

10

Analysis of find

• Defn: The load factor,λ, of a hash table is
the ratio: ← no. of elements

← table size

For separate chaining, λ = average # of
elements in a bucket

• unsuccessful:
λ

• successful:
 1 + λ/2

M

N

11

How big should the hash table be?

• For Separate Chaining:

12

tableSize: Why Prime?

• Suppose
– data stored in hash table: 7160, 493, 60, 55, 321,

900, 810

– tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends
to have a pattern

Being a multiple of
11 is usually not the
pattern

3

13

Open Addressing

2

3

9

8

7

6

5

4

1

0

Insert:
38
19
8
109
10

• Linear Probing:
after checking spot
h(k), try spot
h(k)+1, if that is
full, try h(k)+2,
then h(k)+3, etc.

14

Terminology Alert!

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”Weiss

15

Linear Probing

f(i) = i

• Probe sequence:
0th probe = h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

ith probe = (h(k) + i) mod TableSize
16

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

17

Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() ��
�

�
��
�

�

−
+ 21

1
1

2
1

λ

()���
�

��
�

�

−
+

λ1

1
1

2

1

18

Quantitatively

Number of probes vs λ:
dashed = linear;
solid = random resolution

Number of probes vs λ:
dashed = linear;
solid = random resolution

