

- Maximum branching factor of M
- Complete tree has height =

disk accesses for find:

Runtime of find:

2

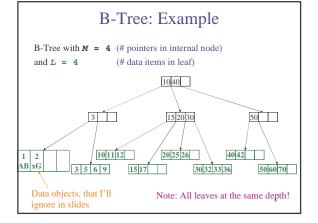
Solution: B-Trees • specialized *M*-ary search trees • Each **node** has (up to) M-1 keys: - subtree between two keys *x* and *y* contains leaves with *values v* such that $x \le v < y$ • Pick branching factor M such that each node takes one full {page, block} of memory

B-Trees

What makes them disk-friendly?

- 1. Many keys stored in a node
 - · All brought to memory/cache in one access!
- 2. Internal nodes contain *only* keys;
 Only leaf nodes contain keys and actual *data*
 - The tree structure can be loaded into memory irrespective of data object size
 - Data actually resides in disk

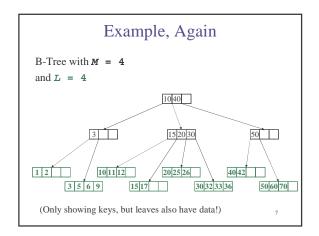
4



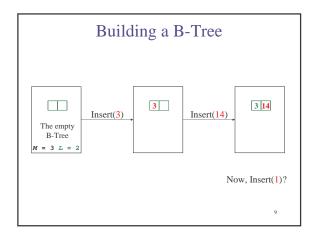
B-Tree Properties ‡

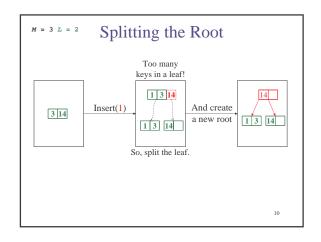
- Data is stored at the leaves
- All leaves are at the same depth and contain between $\lceil L/2 \rceil$ and L data items
- Internal nodes store up to M-1 keys
- Internal nodes have between $\lceil M/2 \rceil$ and M children
- Root (special case) has between 2 and M children (or root could be a leaf)

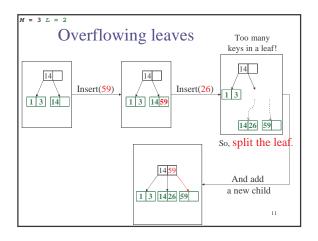
‡These are technically B+-Trees

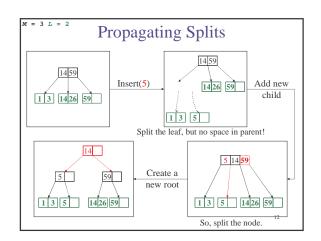


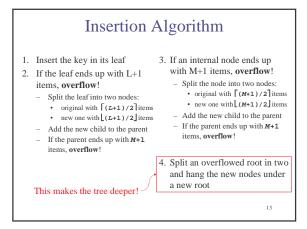
B-trees vs. AVL trees Suppose we have 100 million items (100,000,000): Depth of AVL Tree Depth of B+ Tree with M = 128, L = 64

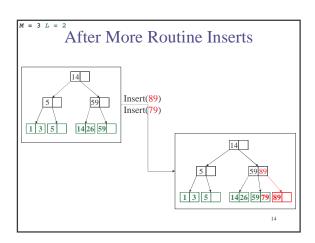


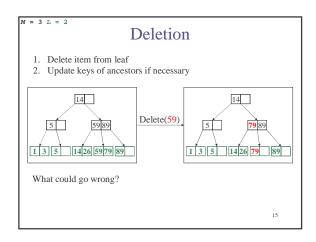


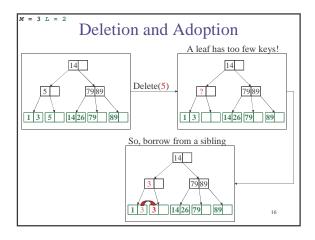




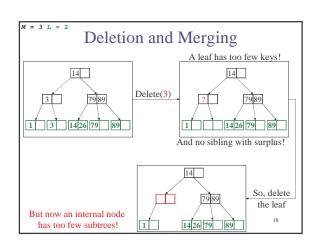


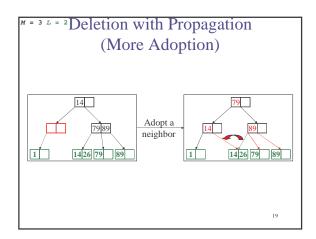


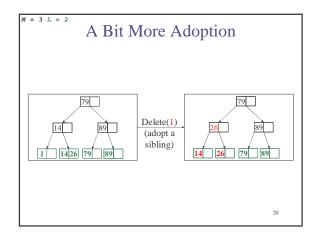


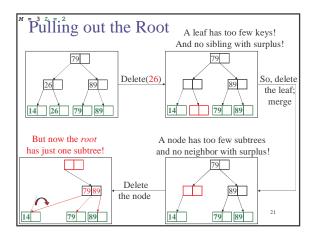


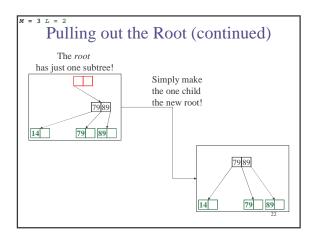
Does Adoption Always Work? • What if the sibling doesn't have enough for you to borrow from? e.g. you have \[\(L/2 \] \] 1 and sibling has \[\(L/2 \] ?











Deletion Algorithm 1. Remove the key from its leaf 2. If the leaf ends up with fewer than \[\(\mu / 2 \) items, underflow! - Adopt data from a sibling; update the parent - If adopting won't work, delete node and merge with neighbor - If the parent ends up with fewer than \[\mu / 2 \] items, underflow!

Deletion Slide Two 3. If an internal node ends up with fewer than \[\[\mu/2 \] items, underflow! - Adopt from a neighbor; update the parent - If adoption won't work, merge with neighbor - If the parent ends up with fewer than \[\[\mu/2 \] items, underflow! 4. If the root ends up with only one child, make the child the new root of the tree

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if **M** and **L** are large (Why?)
- If $\mathbf{M} = \mathbf{L} = \mathbf{128}$, then a B-Tree of height 4 will store at least 30,000,000 items

Tree Names You Might Encounter

FYI:

- B-Trees with M = 3, L = x are called 2-3 trees
 - · Nodes can have 2 or 3 keys
- B-Trees with M = 4, L = x are called 2-3-4 trees
 - Nodes can have 2, 3, or 4 keys

26