
1

Trees
(Binary Search Trees)

Chapter 4 in Weiss

2

Tree Calculations

Recall: height is max number
of edges from root to a leaf

Find the height of the tree...

t

runtime:

3

Tree Calculations Example

A

E

B

D F

C

G

IH

KJ L

M

L

N

How high is this tree?

4

More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

5

Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}

6

Binary Trees
• Binary tree is

– a root
– left subtree(maybe empty)
– right subtree(maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

2

7

Binary Tree: Representation

A
right

pointer
left

pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

8

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

9

Binary Tree: Some Numbers!

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

10

ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

Remember decreaseKey?

• Priority Queue
– Insert

– DeleteMin

11

The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes
called the “Map ADT”

• snyder
Larry Snyder
OH: W 4:30-5:30
CSE 584

• ppham
Paul Pham
OH: Th 2:30-3:30
CSE 002

• Brianngo

Brian Ngo
OH: Tu 2:30
CSE 002

insert(snyder, ….)

find(ppham)
• ppham

Paul Pham, …

12

A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!

3

13

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

14

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?

15

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

16

Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}

2092

155

10

307 17

Runtime:

17

Find in BST, Iterative

Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else

root = root.right;

}

return root;

}

2092

155

10

307 17

Runtime:
18

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves – easy!

4

19

BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into
an initially empty BST.

Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc.

20

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17

21

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

22

Lazy Deletion

Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

23

Non-lazy Deletion
• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed.
Then “fix” the tree so that it is still a binary search
tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children

24

Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)

5

25

Deletion – The One Child Case

2092

155

10

307

Delete(15)

26

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

27

Deletion – The Two Child Case

Idea: Replace the deleted node with a value
guaranteed to be between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!

28

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted

