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Trees 
(Binary Search Trees)

Chapter 4 in Weiss
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Tree Calculations

Recall: height is max number 
of edges from root to a leaf

Find the height of the tree...
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Tree Calculations Example
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How high is this tree?
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More Recursive Tree Calculations:
Tree Traversals

A traversalis an order for 
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root
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(an expression tree)
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Traversals

void traverse(BNode t){

if (t != NULL)

traverse (t.left);

print t.element;

traverse (t.right);

}

}
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Binary Trees
• Binary tree is

– a root
– left subtree(maybe empty) 
– right subtree(maybe empty) 

• Representation:
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Binary Tree: Representation
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Binary Tree: Special Cases
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Binary Tree: Some Numbers!

For binary tree of height h:
– max # of leaves: 

– max # of nodes:

– min # of leaves:

– min # of nodes:
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ADTs Seen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

Remember decreaseKey?

• Priority Queue
– Insert

– DeleteMin
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The Dictionary ADT

• Data:
– a set of

(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)

The Dictionary ADT is sometimes 
called the “Map ADT”

• snyder
Larry Snyder 
OH: W 4:30-5:30
CSE 584

• ppham
Paul Pham
OH: Th 2:30-3:30
CSE 002

• Brianngo

Brian Ngo
OH: Tu 2:30
CSE 002

insert(snyder, ….)

find(ppham)
• ppham

Paul Pham, …
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A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!
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Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind
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Binary Search Tree Data Structure
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• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtree smaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
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Example and Counter-Example
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Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}
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Runtime:
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Find in BST, Iterative

Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else 

root = root.right;

}

return root;

}
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Runtime:
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Insert in BST
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Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only 
at the leaves – easy!
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BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into 
an initially empty BST. 

Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc. 
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Bonus: FindMin/FindMax

• Find minimum

• Find maximum
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Deletion in BST
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Why might deletion be harder than insertion?
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Lazy Deletion

Instead of physically deleting 
nodes, just mark them as 
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be 

modified (e.g., min and max)
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Non-lazy Deletion
• Removing an item disrupts the tree structure.

• Basic idea: find the node that is to be removed.  
Then “fix” the tree so that it is still a binary search 
tree.

• Three cases:
– node has no children (leaf node)

– node has one child

– node has two children
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Non-lazy Deletion – The Leaf Case
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Delete(17)
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Deletion – The One Child Case
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Delete(15)
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Deletion – The Two Child Case
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Delete(5)

What can we replace 5 with?
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Deletion – The Two Child Case

Idea: Replace the deleted node with a value 
guaranteed to be between the two child subtrees!

Options:

• succfrom right subtree: findMin(t.right)

• predfrom left subtree : findMax(t.left)

Now delete the original node containing succor pred

• Leaf or one child case – easy!
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Finally…
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7 replaces 5

Original node containing
7 gets deleted


