Priority Queues
(Today: Skew Heaps & Binomial Queues)

Chapter 6 in Weiss

10/11/2006 1

Review Merging 2 Leftist Heaps

* merge(T,T,) returns one leftist heap
containing all elements of the two (distinct)
leftist heaps Tand T,

Leftist Merge Continued

If npl(R") >npl(L,)

ANVANIVANVAN

R = Merge(R, T,)

runtime:

10/11/2006 3

0

(special case)
10/11/2006 d

Sewing Up the Leftist Example

¢ &y o 2 f;o

10/11/2006 5

Finally...(Leftist)

10/11/2006 6

Operations on Leftidtieaps Random Definition:
mergewith two trees of total size n: O(log n) Amortized Time

insertwith heap size n: O(log n)

am-or-tized time:
— pretend node is a size 1 leftist heap

Running time limit resulting from “writing off” expe nsive

— insert by merging original heap with one node heap runs of an algorithm over multiple cheap runs of tte
algorithm, usually resulting in a lower overallrunning time
A O _merge, A than indicated by the worst possible case.
« deleteMinwith heap size n: O(log n) If M operations take total O(M log N) time,
amortized time per operation is O(log N)
— remove and return root
— merge left and right subtrees Difference fromaverage time:

D
it ‘ merge, ‘
10/11/2006 7 10/11/2006

Skew Heaps :
I P Merging Two_SkewHeaps
Problems with leftisheaps
merge
— extra storage for npl T
.) . 1 (3 a
— extra complexity/logic to maintain and check npl merge
— right side is “often” heavy and requires a switch ! a
Solution: skewheaps a<b, Ly
— “blindly” adjusting version of leftist heaps T ®
— mergealways switches children when fixing right path ®
— amortized timdor: merge, insert, deleteMin = O(laoyy Q Q ! :
— however, worst case tinfier all three = Of)
10112006 . Only one step per iteration, with childrenalways switched |
Example

Skew Heap Code

void merge(heapl, heap2) {
case {

heapl == NULL: return heap2;

heap2 == NULL: return heap1l;

heapl. findM n() < heap2.findMn():
temp = heapl.right;
heapl.right = heapl.left;
heapl.left = merge(heap2, temp);
return heapl,;

ot herwi se:
return merge(heap2, heapl);

'/ \‘ merge
©
©® ©

&

© @

10/11/2006 10/11/2006 12

}

Runtime Analysis:
Worst-case and Amortized

» No worst case guarantee on right path length!
* All operations rely on merge

= worst case complexity of all ops =

» Will do amortized analysis later in the course
(see chapter 11 if curious)

* Result:M merges take tim® log n

= amortized complexity of all ops =

10/11/2006 13

Comparing Heaps

» Binary Heaps * Leftist Heaps

« d-Heaps * Skew Heaps
Lonodill scope for improvement! "

Yet Another Data Structure:
Binomial Queues

* Structural property

— Forest of binomial treesith at most
one tree of any height

What's a forest?

What's a binomial tree?

 Order property
— Each binomial trebas the heap-order property

10/11/2006 15

The Binomial_TreeB,,
B, has heighh and exactly 2nodes

B, is formed by making@, , a child of
anotherB, ;

* Root has exactli children

» Number of nodes at depth d is binomial coéﬁ.
— Hence the name; we wiibt use this last property

BO
O

B, B, B,
10/11/2006 \%

Binomial Queue witm elements

Binomial Q withn elements has anique structural
representation in terms of binomial trees!

Write nin binary: n= 1101, 2= 13pase 10)

1B, 1B, No B, 1B,

o

1011112006 17

Properties of Binomial Queue

» At most onebinomial tree of any height

e nnodes= binary representation is of size ?
= deepest tree has height ?

= number of trees is ?
Define: height(forest F) = max, i, { height(T) }

Binomial Q with n nodes has heigh®(log n)

10/11/2006 18

Operations on Binomial Queue

« Will again definemerge as the base operation
— insert, deleteMin, buildBinomialQ will use merge

» Can we do increaseKey efficiently?
decreaseKey?

* What about findMin?

10/11/2006 19

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. Forkfrom 1 to maxheight {

a. m — total number ofB,’s in the two BQs #0of 1's

b. ifm=0: continue; 0+0=0

c. ifm=1: continue; 1+0=1

d. ifm=2: combine the tw@,’s to form aB,,, — 1+1 = 0+c
e. ifm=3: retain oned, and ————————— 1+14C = 1+C

combine the other two to formBa,,
}
Claim: When this process ends, the forest
10111/2006 has at most one tree of any height 2

Example: Binomial Queue Merge

H1: H2:
@ @ ® @
%@ @0 @
® VG @
®

10/11/2006 21

Example: Binomial Queue Merge

H1: H2:
a ®
%@ @ @ %
® OV @
G

10/11/2006 22

Example: Binomial Queue Merge

H1: H2:
Q @
% ORE
@
®

10/11/2006 23

Example: Binomial Queue Merge

H1: H2:

10/11/2006 24

Example: Binomial Queue Merge

H1: H2:
@@ W@

® DB ®
® ©®

10/11/2006 25

Example: Binomial Queue Merge

H1: H2:

10/11/2006 26

Merge Example

10/11/2006 27

Complexity of Merge

Constant time for each height
Max height is: logh

= worst case running time &()

10/11/2006 28

Insert in a Binomial Queue

Insert): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge
o()

Average case complexity: 0o(1)

Why?? Hint: Think of adding 1 to 1101

10/11/2006 29

deleteMin in Binomial Queue

Similar to leftist and skew heaps....

10/11/2006 30

deleteMin: Example

BQ

find and delet
smallest roo merge BQ
(without
,,,,,,,,,,,,,,,,,,,,, the shaded part)
3 and BQ’
BQ" %

10/11/2006 31

deleteMin: Example

Result:

runtime;

10/11/2006 32

