Priority Queues
(Today: Skew Heaps \& Binomial Queues)
Chapter 6 in Weiss
-

Review Merging 2 Leftist Heaps

- merge($\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$ returns one leftist heap containing all elements of the two (distinct) leftist heaps T_{1} and T_{2}

T_{2} (b)

Sewing Up the Leftist Example
Finally...(Leftist)

6

Operations on Leftist Heaps

- merge with two trees of total size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- insert with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$
- pretend node is a size 1 leftist heap
- insert by merging original heap with one node heap

$$
\Delta \bigcirc \xrightarrow{\text { merge }} \wedge
$$

- deleteMin with heap size $\mathrm{n}: \mathrm{O}(\log \mathrm{n})$

Random Definition:
 Amortized Time

am-or-tized time:
Running time limit resulting from "writing off" expensive runs of an algorithm over multiple cheap runs of the algorithm, usually resulting in a lower overall running time than indicated by the worst possible case.

If M operations take total $O(M \log N)$ time, amortized time per operation is $\mathrm{O}(\log \mathrm{N})$

Difference from average time:

10/11/2006
8

Skew Heaps

Problems with leftist heaps

- extra storage for npl
- extra complexity/logic to maintain and check npl
- right side is "often" heavy and requires a switch

Solution: skew heaps

- "blindly" adjusting version of leftist heaps
- merge always switches children when fixing right path
- amortized time for: merge, insert, deleteMin $=\mathrm{O}(\log n)$
- however, worst case time for all three $=\mathrm{O}(n)$

10/11/2006

Merging Two Skew Heaps

Only one step per iteration, with children always switched

Runtime Analysis:
 Worst-case and Amortized

- No worst case guarantee on right path length!
- All operations rely on merge
\Rightarrow worst case complexity of all ops =
- Will do amortized analysis later in the course (see chapter 11 if curious)
- Result: M merges take time $M \log n$
\Rightarrow amortized complexity of all ops $=$ 10/11/2006

Comparing Heaps

- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps

The Binomial Tree, B_{h}

Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height
What's a forest?
What's a binomial tree?
- Order property
- Each binomial tree has the heap-order property 10/11/2006

Binomial Queue with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Properties of Binomial Queue

- At most one binomial tree of any height
- n nodes \Rightarrow binary representation is of size ?
\Rightarrow deepest tree has height ?
\Rightarrow number of trees is ?

Define: $\operatorname{height}($ forest F$)=\max _{\text {tree }} \mathrm{Tin}_{\mathrm{F}}\{\operatorname{height}(\mathrm{T})\}$
Binomial Q with \boldsymbol{n} nodes has height $\Theta(\log n)$

10/11/2006
18

Operations on Binomial Queue

- Will again define merge as the base operation - insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

10/11/2006

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight $\{$
a. $\quad m \leftarrow$ total number of B_{k} 's in the two BQs \quad \# of 1 's
b. if $\mathrm{m}=0$: continue; $\square \square \square$ c. if $m=1$ continue; $\square+\square \square+\square=1$
d. if $m=2$: combine the two B_{k} 's to form a $\mathrm{B}_{k+1}-1+1=0+\mathrm{c}$
e. if $m=3$: retain one B_{k} and $\square 1+1+\mathrm{c}=1+\mathrm{c}$
combine the other two to form a B_{k+1}
\}
Claim: When this process ends, the forest 10/11/2006 has at most one tree of any height 20

Example: Binomial Queue Merge
H1:

H2:

10/11/2006
21

Example: Binomial Queue Merge
H1:
H2:

22

Example: Binomial Queue Merge
H1: H2:

10/11/2006 24

Example: Binomial Queue Merge
H1:

10/11/2006
26

Complexity of Merge

Constant time for each height
Max height is: $\log n$
\Rightarrow worst case running time $=\Theta(\quad)$

Insert in a Binomial Queue

deleteMin in Binomial Queue

$\operatorname{Insert}(x)$: Similar to leftist or skew heap Similar to leftist and skew heaps....

$$
\begin{aligned}
& \text { runtime } \\
& \text { Worst case complexity: same as merge } \\
& \text { O() } \\
& \text { Average case complexity: } \mathrm{O}(1) \\
& \text { Why?? Hint: Think of adding } 1 \text { to } 1101 \\
& 10 / 112006
\end{aligned}
$$

