
1

10/11/2006 1

Priority Queues
(Today: Skew Heaps & Binomial Queues)

Chapter 6 in Weiss

10/11/2006 2

Review Merging 2 Leftist Heaps
• merge(T1,T2) returns one leftist heap

containing all elements of the two (distinct)
leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

10/11/2006 3

Leftist Merge Continued
a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

If npl(R’) > npl(L1)

runtime:

10/11/2006 4

Leftist Merge Example

1210

5

87

3

14

1

0 0

1

0 0

0

merge

7

3

14

?

0

0

1210

5

8

1

0 0

0

merge

10

5
?

0 merge

12

8

0

0

8

12

0

0

(special case)

10/11/2006 5

Sewing Up the Leftist Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

Done?

10/11/2006 6

Finally…(Leftist)

8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

2

10/11/2006 7

Operations on LeftistHeaps
• mergewith two trees of total size n: O(log n)

• insertwith heap size n: O(log n)
– pretend node is a size 1 leftist heap

– insert by merging original heap with one node heap

• deleteMinwith heap size n: O(log n)
– remove and return root

– merge left and right subtrees

merge

merge

10/11/2006 8

Random Definition:
Amortized Time

am·or·tized time:
Running time limit resulting from “writing off” expe nsive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)

Difference from average time:

10/11/2006 9

Skew Heaps
Problems with leftistheaps

– extra storage for npl

– extra complexity/logic to maintain and check npl

– right side is “often” heavy and requires a switch

Solution: skewheaps
– “blindly” adjusting version of leftist heaps

– merge always switches children when fixing right path

– amortized timefor: merge, insert, deleteMin = O(log n)

– however, worst case timefor all three = O(n)

10/11/2006 10

Merging Two SkewHeaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Only one step per iteration, with children always switched

10/11/2006 11

Example

1210

5

87

3

14

merge

7

3

14
1210

5

8

merge
7

3

1410

5

8

merge
12

7

3

14108

5

12
10/11/2006 12

Skew Heap Code
void merge(heap1, heap2) {

case {

heap1 == NULL: return heap2;

heap2 == NULL: return heap1;

heap1.findMin() < heap2.findMin():

temp = heap1.right;

heap1.right = heap1.left;

heap1.left = merge(heap2, temp);

return heap1;

otherwise:

return merge(heap2, heap1);

}

}

3

10/11/2006 13

Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!

• All operations rely on merge

� worst case complexity of all ops =

• Will do amortized analysis later in the course
(see chapter 11 if curious)

• Result: M merges take time M log n

� amortized complexity of all ops =

10/11/2006 14

Comparing Heaps

• Binary Heaps

• d-Heaps

• Leftist Heaps

• Skew Heaps

Still scope for improvement!

10/11/2006 15

Yet Another Data Structure:
Binomial Queues

• Structural property
– Forest of binomial treeswith at most

one tree of any height

• Order property
– Each binomial treehas the heap-order property

What’s a forest?

What’s a binomial tree?

10/11/2006 16

The Binomial Tree, Bh
• Bh has height h and exactly 2h nodes

• Bh is formed by making Bh-1 a child of
another Bh-1

• Root has exactly h children

• Number of nodes at depth d is binomial coeff.
– Hence the name; we will not use this last property

��
�

�
��
�

�

d

h

B0 B1 B2 B3

10/11/2006 17

Binomial Queue with n elements

Binomial Q with n elements has a unique structural
representation in terms of binomial trees!

Write n in binary: n = 1101 (base 2)= 13(base 10)

1 B3 1 B2 No B1 1 B0

10/11/2006 18

Properties of Binomial Queue
• At most onebinomial tree of any height

• n nodes � binary representation is of size ?
� deepest tree has height ?
� number of trees is ?

Define: height(forest F) = maxtree T in F{ height(T) }

Binomial Q with n nodes has height
�

(log n)

4

10/11/2006 19

Operations on Binomial Queue

• Will again define merge as the base operation
– insert, deleteMin, buildBinomialQ will use merge

• Can we do increaseKey efficiently?
decreaseKey?

• What about findMin?

10/11/2006 20

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight {

a. m ← total number of Bk’s in the two BQs
b. if m=0: continue;
c. if m=1: continue;
d. if m=2: combine the two Bk’s to form a Bk+1

e. if m=3: retain one Bk and
combine the other two to form a Bk+1

}
Claim: When this process ends, the forest

has at most one tree of any height

of 1’s
0+0 = 0
1+0 = 1
1+1 = 0+c
1+1+c = 1+c

10/11/2006 21

Example: Binomial Queue Merge

31

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

10/11/2006 22

Example: Binomial Queue Merge

31

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

10/11/2006 23

Example: Binomial Queue Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

721

H1: H2:

10/11/2006 24

Example: Binomial Queue Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

5

10/11/2006 25

Example: Binomial Queue Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

10/11/2006 26

Example: Binomial Queue Merge

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

10/11/2006 27

Merge Example

10/11/2006 28

Complexity of Merge

Constant time for each height

Max height is: log n

� worst case running time = ()

10/11/2006 29

Insert in a Binomial Queue

Insert(x): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge
O()

Average case complexity: O(1)

Why?? Hint: Think of adding 1 to 1101

10/11/2006 30

deleteMin in Binomial Queue
Similar to leftist and skew heaps….

6

10/11/2006 31

deleteMin: Example

4

8

3

7

5

7BQ

8

7

5

find and delete
smallest root merge BQ

(without

the shaded part)

and BQ’
BQ’

10/11/2006 32

deleteMin: Example

8

4

7

5

7
Result:

runtime:

