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Priority Queues 
(Leftist Heaps & Skew Heaps)

Chapter 6 in Weiss
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CPU

Cache

Memory

Disk

Cycles to access:
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A Solution: d-Heaps

• Each node has d children

• Still representable by 
array

• Good choices for d:
– (choose a power of two 

for efficiency)

– fit one set of children in a 
cache line

– fit one set of children on a 
memory page/disk block
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Operations on d-Heap

• Insert       :    runtime =

• deleteMin:   runtime = 

Does this help insert or deleteMin more?
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One More Operation

• Merge two heaps. Ideas?
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New Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller 

heap into the larger. 

runtime:

– second attempt: concatenate binary heaps’
arrays and run buildHeap.

runtime:
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Leftist Heaps

Idea: 

Focus all heap maintenance work in one 
small part of the heap

Leftist heaps:
1. Most nodes are on the left

2. All the merging work is done on the right
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null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children 

Definition: Null Path Length

• npl(null) = -1

• npl(leaf) = 0

• npl(single-child node) = 0
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Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0
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Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority 
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))

– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete? 
balanced? 10/9/2006 10

Are These Leftist?
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Every subtree of a leftist 
tree is leftist!
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Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.
Proof: (By contradiction)

R

x

L
D2

D1

Pick a shorter path:   D1 < D2

Say it diverges from right path at x

npl(L) ≤ D1-1   because of the path of 
length D1-1 to null

npl(R) ≥ D2-1   because every node on
right path is leftist

Leftist property at x violated! 10/9/2006 12

Right Path in a Leftist Tree is Short (#2)
Claim: If the right path has r nodes, then the tree has 

at least
2r -1 nodes.

Proof: (By induction)
Base case          : r=1 . Tree has at least 21-1 = 1 node
Inductive step  : assume true for r’< r .   Prove for tree with right 

path at least r .
1. Right subtree: right path of r-1 nodes

� 2r-1 -1 right subtree nodes (by induction)
2. Left subtree:   also right path of length at least r-1 (by previous 
slide) � 2r-1 -1 left subtree nodes (by induction)

Total tree size: (2r-1 -1) + (2 r-1 -1) + 1 = 2 r -1
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Why do we have the leftist property?

Because it guarantees that:

• the right path is really short compared to 
the number of nodes in the tree

• A leftist tree of N nodes, has a right path of 
at most log (N+1) nodes

Idea – perform all work on the right path
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Merge two heaps (basic idea)

• Put the smaller root as the new root,

• Hang its left subtree on the left.

• Recursivelymerge its right subtree and the 
other tree.
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Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap 

containing all elements of the two (distinct) 
leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1
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Merge Continued
a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

If npl(R’ ) > npl(L1)

runtime:
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Let’s do an example, but first…
Other Heap Operations

• insert ?

• deleteMin ?

10/9/2006 18

Operations on Leftist Heaps
• mergewith two trees of total size n: O(log n)

• insertwith heap size n: O(log n)
– pretend node is a size 1 leftist heap

– insert by merging original heap with one node heap

• deleteMinwith heap size n: O(log n)
– remove and return root

– merge left and right subtrees

merge

merge
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Merge Example
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(special case)
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Sewing Up the Example
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Done?
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Finally…
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