
1

10/9/2006 1

Priority Queues
(Leftist Heaps & Skew Heaps)

Chapter 6 in Weiss

10/9/2006 2

CPU

Cache

Memory

Disk

Cycles to access:

10/9/2006 3

4

9654

23

1

8 1012

7

11

A Solution: d-Heaps

• Each node has d children

• Still representable by
array

• Good choices for d:
– (choose a power of two

for efficiency)

– fit one set of children in a
cache line

– fit one set of children on a
memory page/disk block

3 7 2 8 5 121110 6 9112

10/9/2006 4

Operations on d-Heap

• Insert : runtime =

• deleteMin: runtime =

Does this help insert or deleteMin more?

10/9/2006 5

One More Operation

• Merge two heaps. Ideas?

10/9/2006 6

New Operation: Merge

Given two heaps, merge them into one heap
– first attempt: insert each element of the smaller

heap into the larger.

runtime:

– second attempt: concatenate binary heaps’
arrays and run buildHeap.

runtime:

2

10/9/2006 7

Leftist Heaps

Idea:

Focus all heap maintenance work in one
small part of the heap

Leftist heaps:
1. Most nodes are on the left

2. All the merging work is done on the right

10/9/2006 8

null path length (npl) of a node x = the number of nodes between x
and a null in its subtree

OR
npl(x) = min distance to a descendant with 0 or 1 children

Definition: Null Path Length

• npl(null) = -1

• npl(leaf) = 0

• npl(single-child node) = 0

000

0?1

??

?

Equivalent definitions:

1. npl(x) is the height of largest
complete subtree rooted at x

2. npl(x) = 1 + min{npl(left(x)), npl(right(x))}

0

10/9/2006 9

Leftist Heap Properties
• Heap-order property

– parent’s priority value is ≤ to childrens’ priority
values

– result: minimum element is at the root

• Leftist property
– For every node x, npl(left(x)) ≥ npl(right(x))

– result: tree is at least as “heavy” on the left as the right

Are leftist trees…
complete?
balanced? 10/9/2006 10

Are These Leftist?

00

001

11

2

0

0

000

11

2

1

000

0

0

0

0

0

1

0 0

Every subtree of a leftist
tree is leftist!

10/9/2006 11

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.
Proof: (By contradiction)

R

x

L
D2

D1

Pick a shorter path: D1 < D2

Say it diverges from right path at x

npl(L) ≤ D1-1 because of the path of
length D1-1 to null

npl(R) ≥ D2-1 because every node on
right path is leftist

Leftist property at x violated! 10/9/2006 12

Right Path in a Leftist Tree is Short (#2)
Claim: If the right path has r nodes, then the tree has

at least
2r -1 nodes.

Proof: (By induction)
Base case : r=1 . Tree has at least 21-1 = 1 node
Inductive step : assume true for r’< r . Prove for tree with right

path at least r .
1. Right subtree: right path of r-1 nodes

� 2r-1 -1 right subtree nodes (by induction)
2. Left subtree: also right path of length at least r-1 (by previous
slide) � 2r-1 -1 left subtree nodes (by induction)

Total tree size: (2r-1 -1) + (2 r-1 -1) + 1 = 2 r -1

3

10/9/2006 13

Why do we have the leftist property?

Because it guarantees that:

• the right path is really short compared to
the number of nodes in the tree

• A leftist tree of N nodes, has a right path of
at most log (N+1) nodes

Idea – perform all work on the right path

10/9/2006 14

Merge two heaps (basic idea)

• Put the smaller root as the new root,

• Hang its left subtree on the left.

• Recursivelymerge its right subtree and the
other tree.

10/9/2006 15

Merging Two Leftist Heaps
• merge(T1,T2) returns one leftist heap

containing all elements of the two (distinct)
leftist heaps T1 and T2

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

10/9/2006 16

Merge Continued
a

L1 R’

R’ = Merge(R1, T2)

a

R’ L1

If npl(R’) > npl(L1)

runtime:

10/9/2006 17

Let’s do an example, but first…
Other Heap Operations

• insert ?

• deleteMin ?

10/9/2006 18

Operations on Leftist Heaps
• mergewith two trees of total size n: O(log n)

• insertwith heap size n: O(log n)
– pretend node is a size 1 leftist heap

– insert by merging original heap with one node heap

• deleteMinwith heap size n: O(log n)
– remove and return root

– merge left and right subtrees

merge

merge

4

10/9/2006 19

Merge Example

1210

5

87

3

14

1

0 0

1

0 0

0

merge

7

3

14

?

0

0

1210

5

8

1

0 0

0

merge

10

5
?

0 merge

12

8

0

0

8

12

0

0

(special case)

10/9/2006 20

Sewing Up the Example

8

12

0

0

10

5
?

0

7

3

14

?

0

0

8

12

0

0

10

5
1

0

7

3

14

?

0

0
8

12

0

0

10

5 1

0

7

3

14

1

0

0

Done?

10/9/2006 21

Finally…

8

12

0

0

10

5 1

0

7

3

14

1

0

0

7

3

14

1

0

0
8

12

0

0

10

5 1

0

