Heap — Insert(val)

Basic Idea:
1. Putval at “next” leaf position

2. Repeatedly exchange node with its parent
if needed

10/6/2006 1

Insert: percolate up

10/6/2006 2

Insert pseudo/C++ Code
(optimized)

voi d insert(Chject o) { int percolateUp(int hole,
hj ect val) {

assert (!isFull ;
N (0) while (hole > 1 &&
Size++; val < Heapl[hol e/ 2])
newPos = Heap[hol e] = Heap[hol e/ 2];
per col at eUp(si ze, 0); hole /= 2;
Heap[newPos] = o; return hol e;
} }
runtime;
10/6/2006 (Java code in book 3

Heap — Deletemin

Basic Idea:
1. Remove root (that is always the min!)

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed
10/6/2006 4

DeleteMin: percolate down

10/6/2006 5

DeleteMin pseudo/C++ Code
(Optimized)

int percol ateDown(int hole,
bj ect val) {

(bj ect deleteM n() {
assert (!i sEnpty()); while (2*hole <= size) {
returnval = Heap[1]; left = 2*hol e;
size--; right = left + 1;

if (right < size &

newPos = Heap[right] < Heap[left])
percol at eDown(1, target = right;
Heap[si ze+1]); el se
Heap[newPos] = target = left;

Heap[si ze + 1]; if (Heap[target] < val) {
return returnval ; Heap[hol e] = Heap[target];
} hol e = target;
}
. el se
runtime: break;

}

1062008 (Java code in boo % return hole; 6

Insert: 16, 32, 4, 69, 105, 43,p

B B e e Other Priority Queue

Operations
« decreaseK ey(objPtr, amount)

— given a pointer to an object in the queue, redksaariority value

Solution: change priority and

* increaseK ey(objPtr, amount)
— given a pointer to an object in the queue, in@éaspriority value|

Solution: change priority and

Why do we need a pointer? Why not simply data value?

10/6/2006

10/6/2006

More Priority Queue Operations

* Remove(objPtr)

(125|113 10]6]9]4a]8]1]7]2]
— given a pointer to an object in the queue,
remove it

BuildHeap: Floyd’'s Method

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property
%
Solution: set priority to negative infinity,
percolate up to root and deleteMin

* buildHeap
Naive solution:
Running time:

10/6/2006

Can wedo better? 9

10/6/2006 10

_ BuildHeap: Floyd’'s Method
Buildheap pseudocode & &

private void buildHeap() {
for (int i =currentSize/2; i >0; i--)
percol ateDown(i);

runtime:

—

R R PO ®é P 9
e J »
10/6/2006 11 10/5/ @ @ @ e @ @

runtime;

10/6/2006

Finally...

©
AN f\
@ O 6 0

/
@

\

OGO

13

Facts about Heaps
Observations:
« finding a child/parent index is a multiply/dividey two
< operations jump widely through the heap
« each percolate step looks at only two new nodes
* inserts are at least as common as deleteMins

Realities:

« division/multiplication by powers of two are eglydiast
« looking at only two new pieces of data: bad forheal

< with huge data sets, disk accesses dominate

10/6/2006 14

CPU

Cache

Memory

10/6/2006

Disk

15

Cycles to access:

