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Heap – Insert(val)

Basic Idea: 

1. Put val at “next” leaf position

2. Repeatedly exchange node with its parent 
if needed
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Insert: percolate up
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Insert pseudo/C++ Code 
(optimized)

void insert(Object o) {

assert(!isFull());

size++;

newPos =

percolateUp(size,o);

Heap[newPos] = o;

}

int percolateUp(int hole, 
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:
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Heap – Deletemin

Basic Idea: 

1. Remove root (that is always the min!)

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.
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DeleteMin: percolate down
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DeleteMin pseudo/C++ Code 
(Optimized)

Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[1];

size--;

newPos = 

percolateDown(1,

Heap[size+1]);

Heap[newPos] = 

Heap[size + 1];

return returnVal;

}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole; 
right = left + 1;
if (right ≤ size && 

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else

break;
}
return hole;

}

runtime:

(Java code in book)
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876543210

Insert: 16, 32, 4, 69, 105, 43, 2
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Other Priority Queue 
Operations

• decreaseKey(objPtr, amount)
– given a pointer to an object in the queue, reduce its priority value

Solution:  change priority and ____________________________

• increaseKey(objPtr, amount)
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?
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More Priority Queue Operations

• Remove(objPtr)
– given a pointer to an object in the queue, 

remove it

Solution:  set priority to negative infinity, 
percolate up to root and deleteMin

• buildHeap
Naïve solution:
Running time:
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BuildHeap: Floyd’s Method
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Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!
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Buildheap pseudocode

private void buildHeap() {

for ( int i = currentSize/2; i > 0; i-- )

percolateDown( i );

}

runtime:
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BuildHeap: Floyd’s Method
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Finally…
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runtime:
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Facts about Heaps
Observations:
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast

• looking at only two new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate

10/6/2006 15

CPU

Cache

Memory

Disk

Cycles to access:


