
1

10/6/2006 1

Heap – Insert(val)

Basic Idea:

1. Put val at “next” leaf position

2. Repeatedly exchange node with its parent
if needed

10/6/2006 2

Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

10/6/2006 3

Insert pseudo/C++ Code
(optimized)

void insert(Object o) {

assert(!isFull());

size++;

newPos =

percolateUp(size,o);

Heap[newPos] = o;

}

int percolateUp(int hole,
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:

(Java code in book) 10/6/2006 4

Heap – Deletemin

Basic Idea:

1. Remove root (that is always the min!)

2. Put “last” leaf node at root

3. Find smallest child of node

4. Swap node with its smallest child if needed.

5. Repeat steps 3 & 4 until no swaps needed.

10/6/2006 5

DeleteMin: percolate down

996040

1520

10

50 700

85

65

996040

6520

15

50 700

85

10/6/2006 6

DeleteMin pseudo/C++ Code
(Optimized)

Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[1];

size--;

newPos =

percolateDown(1,

Heap[size+1]);

Heap[newPos] =

Heap[size + 1];

return returnVal;

}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right ≤ size &&

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else

break;
}
return hole;

}

runtime:

(Java code in book)

2

10/6/2006 7

876543210

Insert: 16, 32, 4, 69, 105, 43, 2

10/6/2006 8

Other Priority Queue
Operations

• decreaseKey(objPtr, amount)
– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey(objPtr, amount)
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

10/6/2006 9

More Priority Queue Operations

• Remove(objPtr)
– given a pointer to an object in the queue,

remove it

Solution: set priority to negative infinity,
percolate up to root and deleteMin

• buildHeap
Naïve solution:
Running time:

Can we do better? 10/6/2006 10

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

10/6/2006 11

Buildheap pseudocode

private void buildHeap() {

for (int i = currentSize/2; i > 0; i--)

percolateDown(i);

}

runtime:

10/6/2006 12

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

3

10/6/2006 13

Finally…

11710812

9654

23

1

runtime:

10/6/2006 14

Facts about Heaps
Observations:
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast

• looking at only two new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate

10/6/2006 15

CPU

Cache

Memory

Disk

Cycles to access:

