Priority Queues
(Today: Binary Min Heaps)

Chapter 6 in Weiss

10/6/2006 1

Given a recursive equation for the running time,
can sometimes simplify it for analysis.

Simplifying Recurrences

For anupper-boundnalysis, can optionally simplify to
somethindarger, e.g.

T(n) = T(floor(n/2)) +1 to T(n)<T(n/2) +1

For alower-boundanalysis, can optionally simplify to
somethingsmaller e.g.

T(n)=2T/2+5)+1 to T(n)=2T(n/2) +1

10/6/2006 2

Priority Queue ADT

1. PQueuedata : collection of data wittpriority

2. PQueue operations
— insert
— deleteMin
(also: create, destroy, is_empty)

3. PQueue property: for two elements in the
queuex andy, if x has dower priority value
thany, x will be deleted beforg

10/6/2006 3

Applications of the Priority Q

Select print jobs in order of decreasiaggth

Forward packets on network routers in order g
urgency

Select mostrequentsymbols for compression
Sort numbers, pickingiinimumfirst

Anything greedy

Implementations of Priority Queue ADT

insert deleteMin

Unsorted list (Array)

Unsorted list (Linked-List)

Sorted list (Array)

Sorted list (Linked-List)

Binary Search Tree (BST)

10/6/2006 5

Tree Review

TreeT
root(T):
leaves(T): @ e
children(B):
parent(H): ©E® ©
siblings(E):
ancestors(F): m 0
descendents(G):
subtree(C): 0@0@@

More Tree Terminology et

Some More Tree Terminology

T isbinaryif ... (&) TreeT
°
Tisn-aryif ...
5
T iscompleteif ... ® ®

How deep isa complete tree with n nodes?
10/6/2006 8

depth(T):

height(G): ® ©

degree(B): Q e e @

branching factor(T): m o
QOOW®

Priority Queue ADT

* Processor scheduling example
* Printer queues ?7?7?

e Subtask of other algorithms

» operations: insert, deleteMin

10/6/2006 9

Binary Heap Properties

1. Structure Property
2. Ordering Property

10/6/2006 10

Heap Structure Property

A binary heap is a complete binary tree.

Complete binary tree—binary tree that is
completely filled, with the possible exception of
the bottom level, which isfilled left to right.

Examples:

Py
Palre

10/6/2006 11

Representing Complete
Binary Trees in an Array

/l, @ From nodei:

S D

4@‘ 5@‘ 6@ 7‘© Igftchilq:.
8® 9®10©11® 1@ ;grf;tnihlld.

implicit (array) implementation:

[lafefclolelrleln]i[o]k]L]

o 1 2 3 4 5 6 7 8 9 10 11 12 13

10/6/2006 12

Why better than tree with
pointers?

10/6/2006

13

Heap Order Property

Heap order property: For every non-root
node X, the value in the parent of X isless
than (or equal to) thevaluein X.

® .
iéj\@@ cgf@

10/6/2006 14

Heap Operations

e findMin:
* insert(val): percolate up.
* deleteMin: percolate down.

<
& @ &

10/6/2006

15

Heap — Insert(val)

Basic |dea:
1. Putva at “next” leaf position

2. Repeatedly exchange node with its parent
if needed

10/6/2006 16

Insert: percolate up

10/6/2006

17

Insert pseudo/C++ Code
(optimized)

voi d insert(Object o) { int percolateUp(int hole,

assert (lisFull()); \Ahile(hole>§_1ng§m val) {

Si ze++; val < Heap[hol e/2])
newPos = Heap[hol e] = Heap[hol e/ 2] ;
percol at eUp(si ze, 0) ;
Heap[newPos] = o;
} }

hole /= 2;
}

return hole;

runtime:

10/6/2006 (Java code in book) 18

Heap — Deletemin

Basic |dea:

1

o s DN

Remove root (that is always the min!)
Put “last” leaf node at root
Find smallest child of node

Swap node with its smallest child if needed.

Repeat steps 3 & 4 until no swaps needed.

10/6/2006 19

DeleteMin: percolate down

) &
@ @ @& D
GO QO

10/6/2006

20

